Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Autophagy ; : 1-2, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450633

ABSTRACT

Macroautophagy/autophagy is a conserved lysosomal degradation process composed of both selective and nonselective degradation pathways. The latter occurs upon nutrient depletion. Selective autophagy exerts quality control of damaged organelles and macromolecules and is going on also under nutrient-replete conditions. Proper regulation of autophagy is vital for cellular homeostasis and prevention of disease. During nutrient availability, autophagy is inhibited by the MTORC1 signaling pathway. However, selective, basal autophagy occurs continuously. How the MTORC1 pathway is fine-tuned to facilitate basal constitutive autophagy is unclear. Recently, we identified the WD-domain repeat protein WDR83/MORG1 as a negative regulator of MTORC1 signaling allowing basal, selective autophagy. WDR83 interacts with both the Ragulator and active RRAG GTPases to prevent recruitment of the MTORC1 complex to the lysosome. Consequently, WDR83 depletion leads to hyperactivation of the MTORC1 pathway and a strong decrease in basal autophagy. As a consequence of WDR83 depletion cell proliferation and migration increase and low levels of WDR83 mRNA are correlated with poor prognosis for several cancers.

2.
Mol Cell ; 84(3): 552-569.e11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38103557

ABSTRACT

Autophagy, an important quality control and recycling process vital for cellular homeostasis, is tightly regulated. The mTORC1 signaling pathway regulates autophagy under conditions of nutrient availability and scarcity. However, how mTORC1 activity is fine-tuned during nutrient availability to allow basal autophagy is unclear. Here, we report that the WD-domain repeat protein MORG1 facilitates basal constitutive autophagy by inhibiting mTORC1 signaling through Rag GTPases. Mechanistically, MORG1 interacts with active Rag GTPase complex inhibiting the Rag GTPase-mediated recruitment of mTORC1 to the lysosome. MORG1 depletion in HeLa cells increases mTORC1 activity and decreases autophagy. The autophagy receptor p62/SQSTM1 binds to MORG1, but MORG1 is not an autophagy substrate. However, p62/SQSTM1 binding to MORG1 upon re-addition of amino acids following amino acid's depletion precludes MORG1 from inhibiting the Rag GTPases, allowing mTORC1 activation. MORG1 depletion increases cell proliferation and migration. Low expression of MORG1 correlates with poor survival in several important cancers.


Subject(s)
GTP Phosphohydrolases , Monomeric GTP-Binding Proteins , Humans , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HeLa Cells , Sequestosome-1 Protein/metabolism , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Lysosomes/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
3.
Autophagy ; 19(10): 2819-2820, 2023 10.
Article in English | MEDLINE | ID: mdl-36847414

ABSTRACT

The inflammatory repressor TNIP1/ABIN-1 is important for keeping in check inflammatory and cell-death pathways to avoid potentially dangerous sustained activation of these pathways. We have now found that TNIP1 is rapidly degraded by selective macroautophagy/autophagy early (0-4 h) after activation of TLR3 by poly(I:C)-treatment to allow expression of pro-inflammatory genes and proteins. A few hours later (6 h), TNIP1 levels rise again to counteract sustained inflammatory signaling. TBK1-mediated phosphorylation of a TNIP1 LIR motif regulates selective autophagy of TNIP1 by stimulating interaction with Atg8-family proteins. This is a novel level of regulation of TNIP1, whose protein level is crucial for controlling inflammatory signaling.


Subject(s)
Autophagy , DNA-Binding Proteins , Microtubule-Associated Proteins , Humans , Amino Acid Motifs , Autophagy/physiology , Autophagy-Related Protein 8 Family/metabolism , Microtubule-Associated Proteins/metabolism , Phosphorylation , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism
4.
J Cell Biol ; 222(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36574265

ABSTRACT

Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins. This selective autophagy efficiently reduces TNIP1 protein levels early (0-4 h) upon poly(I:C) treatment to allow efficient initiation of the inflammatory response. At 6 h, TNIP1 levels are restored due to increased transcription avoiding sustained inflammation. Thus, similarly as in cancer, autophagy may play a dual role in controlling inflammation depending on the exact state and timing of the inflammatory response.


Subject(s)
Autophagy , DNA-Binding Proteins , Inflammation , Protein Serine-Threonine Kinases , Humans , DNA-Binding Proteins/metabolism , HeLa Cells , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
5.
FEBS J ; 290(4): 1096-1116, 2023 02.
Article in English | MEDLINE | ID: mdl-36111389

ABSTRACT

Tripartite motif-containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors is recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here, we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that co-localize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 knockout cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27-mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 knockout cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27-expressing cells, but not in HEK293 FlpIn TRIM27 knockout cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.


Subject(s)
Autophagy , Mitochondria , Mitophagy , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Humans , Autophagy/physiology , DNA-Binding Proteins/metabolism , HEK293 Cells , Mitochondria/genetics , Mitochondria/metabolism , Mitophagy/physiology , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sequestosome-1 Protein/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Tripartite Motif Proteins/metabolism
6.
Autophagy Rep ; 2(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38214012

ABSTRACT

The Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, Arabidopsis, C. elegans and Drosophila to humans. Although varying in number of homologs, from one in yeast to seven in humans, and more than ten in some plants, there is a strong evolutionary conservation of structural features and interaction modes. The most prominent interaction mode is between the LC3 interacting region (LIR), also called Atg8 interacting motif (AIM), binding to the LIR docking site (LDS) in Atg8 homologs. There are variants of these motifs like "half-LIRs" and helical LIRs. We discuss details of the binding modes and how selectivity is achieved as well as the role of multivalent LIR-LDS interactions in selective autophagy. A number of LIR-LDS interactions are known to be regulated by phosphorylation. New methods to predict LIR motifs in proteins have emerged that will aid in discovery and analyses. There are also other interaction surfaces than the LDS becoming known where we presently lack detailed structural information, like the N-terminal arm region and the UIM-docking site (UDS). More interaction modes are likely to be discovered in future studies.

7.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36255390

ABSTRACT

NBR1 was discovered as an autophagy receptor not long after the first described vertebrate autophagy receptor p62/SQSTM1. Since then, p62 has currently been mentioned in >10,000 papers on PubMed, while NBR1 is mentioned in <350 papers. Nonetheless, evolutionary analysis reveals that NBR1, and likely also selective autophagy, was present already in the last eukaryotic common ancestor (LECA), while p62 appears first in the early Metazoan lineage. Furthermore, yeast-selective autophagy receptors Atg19 and Atg34 represent NBR1 homologs. NBR1 is the main autophagy receptor in plants that do not contain p62, while most animal taxa contain both NBR1 and p62. Mechanistic studies are starting to shed light on the collaboration between mammalian NBR1 and p62 in the autophagic degradation of protein aggregates (aggrephagy). Several domains of NBR1 are involved in cargo recognition, and the list of known substrates for NBR1-mediated selective autophagy is increasing. Lastly, roles of NBR1 in human diseases such as proteinopathies and cancer are emerging.


Subject(s)
Autophagy , Intracellular Signaling Peptides and Proteins , Macroautophagy , Animals , Humans , Carrier Proteins/genetics , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mammals , Protein Aggregates , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Plants
8.
Autophagy ; 17(9): 2656-2658, 2021 09.
Article in English | MEDLINE | ID: mdl-34275433

ABSTRACT

Mitophagy, the clearance of surplus or damaged mitochondria or mitochondrial parts by autophagy, is important for maintenance of cellular homeostasis. Whereas knowledge on programmed and stress-induced mitophagy is increasing, much less is known about mechanisms of basal mitophagy. Recently, we identified SAMM50 (SAMM50 sorting and assembly machinery component) as a receptor for piecemeal degradation of components of the sorting and assembly machinery (SAM) complex and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 interacts directly with Atg8-family proteins through a canonical LIR motif and with SQSTM1/p62 to mediate basal piecemeal mitophagy. During a metabolic switch to oxidative phosphorylation (OXPHOS), SAMM50 cooperates with SQSTM1 to mediate efficient piecemeal mitophagy.


Subject(s)
Mitophagy , Oxidative Phosphorylation , Autophagy , Autophagy-Related Protein 8 Family/metabolism , Sequestosome-1 Protein/metabolism
9.
Annu Rev Cell Dev Biol ; 37: 143-169, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34152791

ABSTRACT

Selective autophagy is the lysosomal degradation of specific intracellular components sequestered into autophagosomes, late endosomes, or lysosomes through the activity of selective autophagy receptors (SARs). SARs interact with autophagy-related (ATG)8 family proteins via sequence motifs called LC3-interacting region (LIR) motifs in vertebrates and Atg8-interacting motifs (AIMs) in yeast and plants. SARs can be divided into two broad groups: soluble or membrane bound. Cargo or substrate selection may be independent or dependent of ubiquitin labeling of the cargo. In this review, we discuss mechanisms of mammalian selective autophagy with a focus on the unifying principles employed in substrate recognition, interaction with the forming autophagosome via LIR-ATG8 interactions, and the recruitment of core autophagy components for efficient autophagosome formation on the substrate.


Subject(s)
Apoptosis Regulatory Proteins , Microtubule-Associated Proteins , Animals , Apoptosis Regulatory Proteins/metabolism , Autophagosomes/metabolism , Autophagy/genetics , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Mammals/metabolism , Microtubule-Associated Proteins/metabolism
10.
Autophagy ; 17(8): 2051-2052, 2021 08.
Article in English | MEDLINE | ID: mdl-34162311

ABSTRACT

Cellular stress response mechanisms typically increase organellar quantity and volume. To restore cellular homeostasis and organellar integrity, the surplus organelles are cleared by macroautophagy/autophagy, an intracellular process that shuttles cytoplasmic material to the lysosomes for degradation. The degradation is mediated by autophagy receptors that selectively link the degradable cargo to the autophagy machinery. Studies have identified receptors for the degradation of mitochondria, endoplasmic reticulum, lysosomes, and peroxisomes. The autophagic degradation of the Golgi, named Golgiphagy, however, has remained undefined. The Golgi is essential for the processing, sorting and trafficking of proteins and lipids in the secretory pathway. In a recent study, we identified CALCOCO1 as a Golgiphagy receptor in response to nutrient deprivation. CALCOCO1 interacts with Golgi membranes by binding to cytoplasmic Ankyrin repeat (AR) domains of Golgi resident ZDHHC17 and ZDHHC13 palmitoyltransferases (PATs) via a defined zDHHC-AR-binding motif (zDABM) to recruit autophagy machinery. Lack of CALCOCO1 in cells causes an impaired Golgiphagy and expansion of the Golgi.


Subject(s)
Autophagy/physiology , Calcium-Binding Proteins/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Transcription Factors/metabolism , Animals , Endoplasmic Reticulum/metabolism , Humans , Protein Transport/physiology
11.
J Cell Biol ; 220(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34037656

ABSTRACT

Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.


Subject(s)
Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitophagy , Oxidative Phosphorylation , Sequestosome-1 Protein/metabolism , Animals , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Mitochondria/genetics , Mitochondria/ultrastructure , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Protein Binding , Protein Interaction Domains and Motifs , Sequestosome-1 Protein/genetics , Signal Transduction
12.
J Cell Biol ; 220(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33871553

ABSTRACT

The Golgi complex is essential for the processing, sorting, and trafficking of newly synthesized proteins and lipids. Golgi turnover is regulated to meet different cellular physiological demands. The role of autophagy in the turnover of Golgi, however, has not been clarified. Here we show that CALCOCO1 binds the Golgi-resident palmitoyltransferase ZDHHC17 to facilitate Golgi degradation by autophagy during starvation. Depletion of CALCOCO1 in cells causes expansion of the Golgi and accumulation of its structural and membrane proteins. ZDHHC17 itself is degraded by autophagy together with other Golgi membrane proteins such as TMEM165. Taken together, our data suggest a model in which CALCOCO1 mediates selective Golgiphagy to control Golgi size and morphology in eukaryotic cells via its interaction with ZDHHC17.


Subject(s)
Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Calcium-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Nerve Tissue Proteins/metabolism , Transcription Factors/metabolism , Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Calcium-Binding Proteins/genetics , Golgi Apparatus/genetics , HeLa Cells , Humans , Nerve Tissue Proteins/genetics , Protein Transport , Transcription Factors/genetics
13.
Autophagy ; 16(9): 1729-1731, 2020 09.
Article in English | MEDLINE | ID: mdl-32684083

ABSTRACT

The endoplasmic reticulum (ER) is the largest membrane-bound organelle in eukaryotic cells and plays critical roles in diverse processes in metabolism, signaling and intracellular organization. In response to stress stimuli such as nutrient deprivation, accumulation of misfolded proteins or exposure to chemicals, the ER increases in size through upregulated synthesis of its components to counteract the stress. To restore physiological size, the excess ER components are continuously dismantled and degraded by reticulophagy, a form of autophagy that targets, via adaptor molecules called reticulophagy receptors, specific ER portions to the lysosome for degradation. Previous studies have identified several ER resident proteins as reticulophagy receptors. In a recent study, we identified CALCOCO1 as a soluble reticulophagy receptor for the degradation of tubular ER in response to proteotoxic and starvation-induced stress. On the ER membrane, CALCOCO1 interacts with VAPA and VAPB via a FFAT-like motif and recruits autophagy machinery by binding directly to Atg8-family proteins via LIR and UDS interacting region (UIR) motifs acting co-dependently. Depletion of CALCOCO1 in cultured cells led to an impaired ER degradation during stress.


Subject(s)
Autophagy , Calcium-Binding Proteins/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Motifs , Endoplasmic Reticulum/metabolism , Humans , Models, Biological , Solubility
14.
EMBO J ; 39(15): e103649, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32525583

ABSTRACT

The endoplasmic reticulum (ER) plays important roles in protein synthesis and folding, and calcium storage. The volume of the ER and expression of its resident proteins are increased in response to nutrient stress. ER-phagy, a selective form of autophagy, is involved in the degradation of the excess components of the ER to restore homeostasis. Six ER-resident proteins have been identified as ER-phagy receptors so far. In this study, we have identified CALCOCO1 as a novel ER-phagy receptor for the degradation of the tubular ER in response to proteotoxic and nutrient stress. CALCOCO1 is a homomeric protein that binds directly to ATG8 proteins via LIR- and UDS-interacting region (UIR) motifs acting co-dependently. CALCOCO1-mediated ER-phagy requires interaction with VAMP-associated proteins VAPA and VAPB on the ER membranes via a conserved FFAT-like motif. Depletion of CALCOCO1 causes expansion of the ER and inefficient basal autophagy flux. Unlike the other ER-phagy receptors, CALCOCO1 is peripherally associated with the ER. Therefore, we define CALCOCO1 as a soluble ER-phagy receptor.


Subject(s)
Autophagy , Calcium-Binding Proteins/metabolism , Intracellular Membranes/metabolism , Transcription Factors/metabolism , Vesicular Transport Proteins/metabolism , Animals , Calcium-Binding Proteins/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Mice , Transcription Factors/genetics , Vesicular Transport Proteins/genetics
15.
Nat Commun ; 11(1): 440, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974402

ABSTRACT

p62/SQSTM1 is an autophagy receptor and signaling adaptor with an N-terminal PB1 domain that forms the scaffold of phase-separated p62 bodies in the cell. The molecular determinants that govern PB1 domain filament formation in vitro remain to be determined and the role of p62 filaments inside the cell is currently unclear. We here determine four high-resolution cryo-EM structures of different human and Arabidopsis PB1 domain assemblies and observed a filamentous ultrastructure of p62/SQSTM1 bodies using correlative cellular EM. We show that oligomerization or polymerization, driven by a double arginine finger in the PB1 domain, is a general requirement for lysosomal targeting of p62. Furthermore, the filamentous assembly state of p62 is required for autophagosomal processing of the p62-specific cargo KEAP1. Our results show that using such mechanisms, p62 filaments can be critical for cargo uptake in autophagy and are an integral part of phase-separated p62 bodies.


Subject(s)
Arabidopsis Proteins/chemistry , Carrier Proteins/chemistry , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arginine/chemistry , Autophagy/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , HeLa Cells , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lysosomes/metabolism , Polymerization , Protein Conformation , Protein Domains , Sequestosome-1 Protein/genetics
16.
J Mol Biol ; 432(1): 80-103, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31310766

ABSTRACT

Selective autophagy relies on soluble or membrane-bound cargo receptors that recognize cargo and bring about autophagosome formation at the cargo. The cargo-bound receptors interact with lipidated ATG8 family proteins anchored in the membrane at the concave side of the forming autophagosome. The interaction is mediated by 15- to 20-amino-acid-long sequence motifs called LC3-interacting region (LIR) motifs that bind to the LIR docking site (LDS) of ATG8 proteins. In this review, we focus on LIR-ATG8 interactions and the soluble mammalian selective autophagy receptors. We discuss the roles of ATG8 family proteins as membrane scaffolds in autophagy and the LIR-LDS interaction and how specificity for binding to GABARAP or LC3 subfamily proteins is achieved. We also discuss atypical LIR-LDS interactions and a novel LIR-independent interaction. Recently, it has become clear that several of the soluble cargo receptors are able to recruit components of the core autophagy apparatus to aid in assembling autophagosome formation at the site of cargo sequestration. A model on phagophore recruitment and expansion on a selective autophagy receptor-coated cargo incorporating the latest findings is presented.


Subject(s)
Autophagosomes/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy , Animals , Apoptosis Regulatory Proteins/analysis , Apoptosis Regulatory Proteins/metabolism , Autophagosomes/chemistry , Autophagy-Related Protein 8 Family/analysis , Humans , Macroautophagy , Microtubule-Associated Proteins/analysis , Microtubule-Associated Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Interaction Maps
17.
J Biol Chem ; 295(5): 1240-1260, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31857374

ABSTRACT

Human ATG8 family proteins (ATG8s) are active in all steps of the macroautophagy pathway, and their lipidation is essential for autophagosome formation. Lipidated ATG8s anchored to the outer surface of the phagophore serve as scaffolds for binding of other core autophagy proteins and various effector proteins involved in trafficking or fusion events, whereas those at the inner surface are needed for assembly of selective autophagy substrates. Their scaffolding role depends on specific interactions between the LC3-interacting region (LIR) docking site (LDS) in ATG8s and LIR motifs in various interaction partners. LC3B is phosphorylated at Thr-50 within the LDS by serine/threonine kinase (STK) 3 and STK4. Here, we identified LIR motifs in STK3 and atypical protein kinase Cζ (PKCζ) and never in mitosis A (NIMA)-related kinase 9 (NEK9). All three kinases phosphorylated LC3B Thr-50 in vitro A phospho-mimicking substitution of Thr-50 impaired binding of several LIR-containing proteins, such as ATG4B, FYVE, and coiled-coil domain-containing 1 (FYCO1), and autophagy cargo receptors p62/sequestosome 1 (SQSTM1) and neighbor of BRCA1 gene (NBR1). NEK9 knockdown or knockout enhanced degradation of the autophagy receptor and substrate p62. Of note, the suppression of p62 degradation was mediated by NEK9-mediated phosphorylation of LC3B Thr-50. Consistently, reconstitution of LC3B-KO cells with the phospho-mimicking T50E variant inhibited autophagic p62 degradation. PKCζ knockdown did not affect autophagic p62 degradation, whereas STK3/4 knockouts inhibited autophagic p62 degradation independently of LC3B Thr-50 phosphorylation. Our findings suggest that NEK9 suppresses LC3B-mediated autophagy of p62 by phosphorylating Thr-50 within the LDS of LC3B.


Subject(s)
Autophagy/genetics , Microtubule-Associated Proteins/metabolism , NIMA-Related Kinases/metabolism , Protein Interaction Domains and Motifs/genetics , Sequestosome-1 Protein/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Chromatography, High Pressure Liquid , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Mutation , NIMA-Related Kinases/genetics , Phosphorylation , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/genetics , Serine-Threonine Kinase 3 , Tandem Mass Spectrometry , Threonine/metabolism
18.
J Cell Sci ; 132(23)2019 12 02.
Article in English | MEDLINE | ID: mdl-31685529

ABSTRACT

The tripartite motif (TRIM) proteins constitute a family of ubiquitin E3 ligases involved in a multitude of cellular processes, including protein homeostasis and autophagy. TRIM32 is characterized by six protein-protein interaction domains termed NHL, various point mutations in which are associated with limb-girdle-muscular dystrophy 2H (LGMD2H). Here, we show that TRIM32 is an autophagy substrate. Lysosomal degradation of TRIM32 was dependent on ATG7 and blocked by knockout of the five autophagy receptors p62 (also known as SQSTM1), NBR1, NDP52 (also known as CALCOCO2), TAX1BP1 and OPTN, pointing towards degradation by selective autophagy. p62 directed TRIM32 to lysosomal degradation, while TRIM32 mono-ubiquitylated p62 on lysine residues involved in regulation of p62 activity. Loss of TRIM32 impaired p62 sequestration, while reintroduction of TRIM32 facilitated p62 dot formation and its autophagic degradation. A TRIM32LGMD2H disease mutant was unable to undergo autophagic degradation and to mono-ubiquitylate p62, and its reintroduction into the TRIM32-knockout cells did not affect p62 dot formation. In light of the important roles of autophagy and p62 in muscle cell proteostasis, our results point towards impaired TRIM32-mediated regulation of p62 activity as a pathological mechanisms in LGMD2H.


Subject(s)
Muscular Dystrophies/metabolism , Sequestosome-1 Protein/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Autophagy/genetics , Autophagy/physiology , HEK293 Cells , HeLa Cells , Humans , Immunoprecipitation , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Protein Binding , Sequestosome-1 Protein/genetics , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
19.
Autophagy ; 15(10): 1845-1847, 2019 10.
Article in English | MEDLINE | ID: mdl-31251109

ABSTRACT

Removal of damaged mitochondria is vital for cellular homeostasis especially in non-dividing cells, like neurons. Damaged mitochondria that cannot be repaired by the ubiquitin-proteasomal system are cleared by a form of selective autophagy known as mitophagy. Following damage, mitochondria become labelled with 'eat-me' signals that selectively determine their degradation. Recently, we identified the mitochondrial matrix proteins, NIPSNAP1 (nipsnap homolog 1) and NIPSNAP2 as 'eat-me' signals for damaged mitochondria. NIPSNAP1 and NIPSNAP2 accumulate on the mitochondrial outer membrane following mitochondrial depolarization, recruiting autophagy receptors and adaptors, as well as human Atg8 (autophagy-related 8)-family proteins to facilitate mitophagy. The NIPSNAPs allow a sustained recruitment of SQSTM1-like receptors (SLRs) to ensure efficient mitophagy. Zebrafish lacking Nipsnap1 show decreased mitophagy in the brain coupled with increased ROS production, loss of dopaminergic neurons and strongly reduced locomotion.


Subject(s)
Autophagy-Related Proteins/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Intracellular Signaling Peptides and Proteins/physiology , Membrane Proteins/physiology , Mitophagy/genetics , Animals , Animals, Genetically Modified , Autophagy , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Gene Knockout Techniques , HeLa Cells , Humans , Protein Binding , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/metabolism , Signal Transduction/genetics , Zebrafish
20.
Front Genet ; 10: 249, 2019.
Article in English | MEDLINE | ID: mdl-30984240

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG-repeat expansion in the 5' UTR of the FMR1 gene on the X-chromosome. Both elevated levels of the expanded FMR1 mRNA and aberrant expression of a polyglycine protein (FMRpolyG) from the CGG-repeat region are hypothesized to trigger the pathogenesis of FXTAS. While increased expression of FMRpolyG leads to higher toxicity in FXTAS models, the pathogenic effect of this protein has only been studied in the presence of CGG-containing mRNA. Here we present a model that allows measurement of the effect of FMRpolyG-expression without co-expression of the corresponding CGG mRNA hairpin. This allows direct comparison of the effect of the FMRpolyG protein per se, vs. that of the FMRpolyG protein together with the CGG mRNA hairpin. Our results show that expression of the FMRpolyG, in the absence of any CGG mRNA, is sufficient to cause reduced cell viability, lamin ring disruption and aggregate formation. Furthermore, we found FMRpolyG to be a long-lived protein degraded primarily by the ubiquitin-proteasome-system. Together, our data indicate that accumulation of FMRpolyG protein per se may play a major role in the development of FXTAS.

SELECTION OF CITATIONS
SEARCH DETAIL
...