Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Proteomics ; 200: 28-39, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30862563

ABSTRACT

Durum wheat requires high nitrogen inputs to obtain the high protein concentration necessary to satisfy pasta and semolina quality criteria. Optimizing plant nitrogen use efficiency is therefore of major importance for wheat grain quality. Here, we studied the impact on grain yield, protein concentration, and for the first time on protein composition of a marine (DPI4913) and a fungal (AF086) biostimulants applied to plant leaves. A large-scale quantitative proteomics analysis of wheat flour samples led to a dataset of 1471 identified proteins. Quantitative analysis of 1391 proteins revealed 26 and 38 proteins with a significantly varying abundance after DPI4913 and AF086 treatment, respectively, with 14 proteins in common. Major effects affected proteins involved in grain technological properties like grain hardness, in storage functions with the gluten protein gamma-gliadin, in regulation processes with transcription regulator proteins, and in stress responses with biotic and abiotic stress defense proteins. The involvement of biostimulants in the abiotic stress response was further suggested by an increase in water-use efficiency for both DPI4913 (15.4%) and AF086 (9.9%) treatments. Overall, our work performed in controlled conditions showed that DPI4913 and AF086 treatments promoted grain yield while maintaining protein concentration, and positively affected protein composition for grain quality. Data are available via ProteomeXchange with identifier PXD012469.


Subject(s)
Databases, Protein , Plant Proteins/metabolism , Proteome/metabolism , Proteomics , Triticum/metabolism
2.
Environ Sci Pollut Res Int ; 26(14): 14106-14115, 2019 May.
Article in English | MEDLINE | ID: mdl-30852756

ABSTRACT

Environmentally mediated sensitivity of Lemna minor to copper (Cu) was evaluated for the first time in three experiments: the effects of two levels of nutrient concentration, light irradiance or Cu pre-exposure were tested. Various Cu concentrations (ranging from 0.05 to 0.25 mg/L) were used to assess the sensitivity of L. minor to this metal, using one common strain previously acclimatized to two different levels of light intensity, nutrient enrichment and Cu pre-exposure. Our results showed a phenotypic plastic response of the relative growth rates based on frond number and fresh mass production, and maximum quantum yield of photosystem II (Fv/Fm). Growth was affected by the three environmental conditions both prior and during Cu exposure, whereas Fv/Fm was mostly affected during Cu exposure. Copper significantly influenced all the parameters measured in the three experiments. Environmental conditions significantly modified L. minor sensitivity to Cu in all experiments, with up to twofold difference depending on the treatment. Growth rate was the parameter that was most impacted. Our study revealed for the first time the existence of phenotypic plasticity in L. minor sensitivity to chemical contamination, and implies that environmental context needs to be taken into account for a relevant risk assessment.


Subject(s)
Araceae/drug effects , Araceae/physiology , Copper/toxicity , Water Pollutants, Chemical/toxicity , Acclimatization , Copper/administration & dosage , Ecotoxicology/methods , Light , Phenotype , Photosystem II Protein Complex/metabolism , Water Pollutants, Chemical/administration & dosage
3.
Environ Pollut ; 245: 235-242, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30423538

ABSTRACT

While numerous studies have examined the effect of N deposition on ecosystem N retention, few have analyzed the involvement of plant species and climate warming in this process. We experimentally investigated the effects of increasing N deposition (Nexo) and climate warming on the fate of Nexo in a subalpine meadow and established the involvement of plant species. Using 15N tracer, we tracked Nexo sprayed on the vegetation in belowground and aboveground plant biomasses (AGB) and in bulk soil over three growing seasons. We assessed the Nexo absorption capacity of plant species and the contribution of Nexo to their AGB N pool. The meadow retained a large proportion of Nexo (≈65%, mostly in AGB) for depositions up to four times the background N rate. Nexo present in the meadow compartments in year 2 was still present in year 3, suggesting that the ecosystem was unsaturated after three years of high N input. Nexo retention resulted more from an increase in N concentration in plant tissues than from the increase in AGB. The species-specific Nexo absorption capacity was inversely related to their AGB N concentration. Nexo accounted for up to 40% of total AGB N depending on the species and the N treatments. The contribution of species to ecosystem Nexo retention more contingent on their AGB than on their relative cover in the community, ranked as follows: C. vulgaris (14.0%) > N. stricta (7.0%) > other Poaceae = C. caryophyllea (2.5%) > other Eudicotyledons (1.5%) > non-vascular species = P. erecta > Fabaceae (0.8-0.2%). Climate warming increased AGB and decreased tissue N concentration. No warming-Nexo interaction was observed. Thus, Pyrenean subalpine meadows that have not undergone a decline in plant species richness in recent decades paradoxically display a high potential to sequester atmospheric N deposition.


Subject(s)
Air Pollutants/analysis , Climate Change , Climate , Nitrogen/analysis , Poaceae/classification , Poaceae/metabolism , Biomass , Grassland , Plants/metabolism , Seasons , Soil , Species Specificity
4.
Sci Rep ; 5: 12942, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26255956

ABSTRACT

Deposition of reactive nitrogen (N) from the atmosphere is expected to be the third greatest driver of biodiversity loss by the year 2100. Chemistry-transport models are essential tools to estimate spatially explicit N deposition but the reliability of their predictions remained to be validated in mountains. We measured N deposition and air concentration over the subalpine Pyrenees. N deposition was found to range from 797 to 1,463 mg N m(-2) year(-1). These values were higher than expected from model predictions, especially for nitrate, which exceeded the estimations of EMEP by a factor of 2.6 and CHIMERE by 3.6. Our observations also displayed a reversed reduced-to-oxidized ratio in N deposition compared with model predictions. The results highlight that the subalpine Pyrenees are exposed to higher levels of N deposition than expected according to standard predictions and that these levels exceed currently recognized critical loads for most high-elevation habitats. Our study reveals a need to improve the evaluation of N deposition in mountains which are home to a substantial and original part of the world's biodiversity.

5.
PLoS One ; 9(7): e101218, 2014.
Article in English | MEDLINE | ID: mdl-24992022

ABSTRACT

High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.


Subject(s)
Droughts , Helianthus/genetics , Water/metabolism , Biomass , Carbon Isotopes/analysis , Chromosome Mapping , Chromosomes, Plant/chemistry , Genetic Linkage , Genetic Variation , Genotype , Helianthus/metabolism , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci
6.
Bot Stud ; 55(1): 75, 2014 Dec.
Article in English | MEDLINE | ID: mdl-28510954

ABSTRACT

BACKGROUND: This article evaluates the potential of intraspecific variation for whole-root hydraulic properties in sunflower. We investigated genotypic differences related to root water transport in four genotypes selected because of their differing water use efficiency (JAC doi: 10.1111/jac.12079. 2014). We used a pressure-flux approach to characterize hydraulic conductance (L 0 ) which reflects the overall water uptake capacity of the roots and hydraulic conductivity (Lp r ) which represents the root intrinsic water permeability on an area basis. The contribution of aquaporins (AQPs) to water uptake was explored using mercuric chloride (HgCl2), a general AQP blocker. RESULTS: There were considerable variations in root morphology between genotypes. Mean values of L 0 and Lp r showed significant variation (above 60% in both cases) between recombinant inbred lines in control plants. Pressure-induced sap flow was strongly inhibited by HgCl2 treatment in all genotypes (more than 50%) and contribution of AQPs to hydraulic conductivity varied between genotypes. Treated root systems displayed markedly different L 0 values between genotypes whereas Lp r values were similar. CONCLUSIONS: Our analysis points to marked differences between genotypes in the intrinsic aquaporin-dependent path (Lp r in control plants) but not in the intrinsic AQP-independent paths (Lp r in HgCl2 treated plants). Overall, root anatomy was a major determinant of water transport properties of the whole organ and can compensate for a low AQP contribution. Hydraulic properties of root tissues and organs might have to be taken into account for plant breeding since they appear to play a key role in sunflower water balance and water use efficiency.

7.
Am J Bot ; 96(10): 1814-20, 2009 Oct.
Article in English | MEDLINE | ID: mdl-21622302

ABSTRACT

Interactions between plants are a complex combination of positive and negative interactions, with the net outcome depending on environmental contexts. The more frequent association of Trifolium alpinum (legume) with Festuca eskia than with Nardus stricta (grasses) in many Pyrenean subalpine meadows suggests a differential ability to use nitrogen (N) derived from N(2) fixation. In the field, we investigated the interactions between the legume and grasses and, in the glasshouse, the transfer of (15)N from the legume to the grasses. In one grass-Trifolium mixture, the legume had a strong positive effect on the biomass and N content of the grass as compared to pure grass stands. When both grasses grew together with the legume, only Festuca benefited from the presence of Trifolium but, surprisingly, the benefit decreased with increasing Trifolium abundance. Leaf labeling experiments with (15)N-NH(4)(+) revealed a higher transfer of (15)N from Trifolium to Festuca than to Nardus, suggesting a more direct N pathway between the two species. This more direct pathway could prevent Nardus from benefiting from the legume N in the three-species mixtures. Thus, the positive interactions between N-fixers and nonfixers appear to be largely species-specific and to depend strongly on the species in the plant assemblage.

8.
Am J Bot ; 94(11): 1778-85, 2007 Nov.
Article in English | MEDLINE | ID: mdl-21636372

ABSTRACT

The underlying mechanisms that enable plant species to coexist are poorly understood. Complementarity in resource use is among the major mechanisms proposed that could favor species coexistence but is insufficiently documented. In alpine soil, low temperatures are a major constraint for the supply of plant nitrogen. We carried out (15)N labeling of soil mineral N to determine to what extent four major species of a subalpine community compete for N, or develop ionic (NH(4)(+) vs. NO(3)(-)) or temporal complementarity. The Poaceae took up much more (15)N per soil area unit than the ericaceous species, and all species displayed three major strategies in exploiting (15)N: (1) uptake mainly early in the growing season (Vaccinium myrtillus), (2) uptake at a slow and similar rate throughout the growing season (Rhododendron ferrugineum), and (3) uptake at high rates over the growing season (Festuca eskia and Nardus stricta). However, while F. eskia used (15)NH(4)(+) mainly early and (15)NO(3)(-) mainly late in the growing season, the reverse was observed for N. stricta. Taking into account (15)N dilution in soil NH(4)(+) and NO(3)(-) pools, we calculated that NH(4)(+) provided more than 80% of the mineral N uptake in Ericaceae and about 60% in grasses. Together, such ionic and temporal complementarity would reduce competition between species and could be a major mechanism promoting species diversity.

9.
C R Biol ; 329(2): 98-105, 2006 Feb.
Article in French | MEDLINE | ID: mdl-16439339

ABSTRACT

The effect of the water deficit, on two olive tree varieties 'Chetoui' and 'Chemlali' at the level of photosystem II photochemistry (PSII) was studied through the following parameters: leaf water potential (Psi(Hb)), quantum yield of PSII (PhiPSII), maximum quantum yield of PSII (Phi(max) PSII), electron transfer rate (J(T)) and photochemical quenching (qP). The results obtained show a reduction in the leaf water potential and a decrease in quantum efficiency of PSII. Besides, electron transfer rate and photochemical quenching showed an increase in response to water deficit. These modifications present some differences according to the variety. These observations are discussed in relation to the strategies developed to grow drought-resistant olive trees in arid areas.


Subject(s)
Olea/physiology , Water/physiology , Chemical Phenomena , Chemistry, Physical , Chlorophyll/metabolism , Electron Transport , Fluorescence , Hydroponics , Photochemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Species Specificity
10.
J Plant Physiol ; 161(7): 855-65, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15310075

ABSTRACT

Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.


Subject(s)
Nitrates/metabolism , Nitrites/metabolism , Oxygen/metabolism , Plant Roots/metabolism , Solanum lycopersicum/metabolism , Cell Respiration/drug effects , Cell Respiration/physiology , Hypoxia , Solanum lycopersicum/drug effects , Nitrate Reductase , Nitrate Reductases/metabolism , Nitrates/pharmacology , Nitric Oxide/metabolism , Oxygen/pharmacology , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Plant Roots/drug effects , Tungsten Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...