Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1679: 463389, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35933772

ABSTRACT

Traditional Western blots are commonly used to separate and assay proteins; however, they have limitations including a long, cumbersome process and large sample requirements. Here, we describe a system for Western blotting where capillary gel electrophoresis is used to separate sodium dodecyl sulfate-protein complexes. The capillary outlet is threaded into a piezoelectric inkjetting head that deposits the separated proteins in a quasi-continuous stream of <100 pL droplets onto a moving membrane. Through separations at 400 V/cm and protein capture on a membrane moving at 2 mm/min, we are able to detect actin with a limit of detection at 8 pM, or an estimated 5 fg injected. Separation and membrane capture of sample containing 10 proteins ranging in molecular weights from 11 - 250 kDa was achieved in 15 min. The system was demonstrated with Western blots for actin, ß-tubulin, ERK1/2, and STAT3 in human A431 epidermoid carcinoma cell lysate.


Subject(s)
Actins , Electrophoresis, Capillary , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Humans , Sodium Dodecyl Sulfate
2.
Anal Methods ; 12(12): 1606-1616, 2020 03 28.
Article in English | MEDLINE | ID: mdl-32661464

ABSTRACT

Western blotting is a widely used protein assay platform, but the technique requires long analysis times and multiple manual steps. Microfluidic systems are currently being explored for increased automation and reduction of analysis times, sample volumes, and reagent consumption for western blots. Previous work has demonstrated that proteins separated by microchip electrophoresis can be captured on membranes by dragging the microchip outlet across the membrane. This process reduces the separation and transfer time of a western blot to a few minutes. To further improve the speed and miniaturization of a complete western blot, a microscale immunoassay with direct deposition of immunoassay reagents has been developed. Flow deposition of antibodies is used to overcome diffusion limited binding kinetics so that the entire immunoassay can be completed in 1 h with detection sensitivity comparable to incubation steps requiring 20 h. The use of low microliter/min flow rates with antibody reagents applied directly and locally to the membrane where the target proteins have been captured, reduced antibody consumption ~30-fold. The complete western blot was applied to the detection of GAPDH and ß-Tubulin from A431 cell lysate.


Subject(s)
Electrophoresis, Microchip , Microfluidics , Blotting, Western , Immunoassay , Indicators and Reagents
3.
Anal Chem ; 88(13): 6703-10, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27270033

ABSTRACT

Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 µg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 µm deep × 50 µm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.


Subject(s)
Blotting, Western , Electrophoresis, Microchip/methods , Proteins/analysis , Humans , Jurkat Cells , Mitogen-Activated Protein Kinase 1/analysis , Mitogen-Activated Protein Kinase 3/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...