Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Cancer Med ; 12(16): 17184-17192, 2023 08.
Article in English | MEDLINE | ID: mdl-37455592

ABSTRACT

BACKGROUND/AIM: Clotting factors promote cancer development. We investigated if coagulation proteins promote proliferation and migration in colorectal cancer (CRC) cell lines and whether their direct inhibitors can attenuate these effects. MATERIALS AND METHODS: DLD-1 and SW620 cells were treated with tissue factor (0, 50, 100 and 500 pg/mL ± 10 µg/mL 10H10 [anti-tissue factor antibody]), thrombin (0.0, 0.1, 1.0 and 10.0 U/mL ± 0.5 µM dabigatran [thrombin inhibitor]) and Factor Xa, FXa (0.0, 0.1, 1.0 and 10.0 U/mL ± 100 ng/mL rivaroxaban [FXa inhibitor]) and their effects on proliferation and migration were quantified using the PrestoBlue® and transwell migration assays, respectively. RESULTS: Thrombin increased proliferation from 48 h treatment compared to its control (48 h 6.57 ± 1.36 u vs. 2.42 ± 0.13 u, p = 0.001, 72 h 9.50 ± 1.54 u vs. 4.50 ± 0.47 u, p = 0.004 and 96 h 10.77 ± 1.72 u vs. 5.57 ± 0.25 u, p = 0.008). This increase in proliferation was attenuated by dabigatran at 72 h (2.23 ± 0.16 u vs. 3.26 ± 0.43 u, p = 0.04). Tissue factor (0 pg/mL 20.7 ± 1.6 cells/view vs. 50 pg/mL 32.4 ± 1.9 cells/view, p = 0.0002), FXa (0.0 U/mL 8.9 ± 1.1 cells/view vs. 10.0 U/mL 17.7 ± 1.7 cells/view, p < 0.0001) and thrombin (0.0 U/mL 8.9 ± 1.3 cells/view vs. 10.0 U/mL 20.2 ± 2.0 cells/view, p < 0.0001) all increased migration compared to their controls. However, their direct inhibitors did not attenuate these increases. CONCLUSION: Thrombin, FXa and TF all increase migration in CRC in vitro. Thrombin induced increase in proliferation is abrogated by dabigatran. Dabigatran may have potential as an anti-cancer therapy in CRC.


Subject(s)
Colorectal Neoplasms , Dabigatran , Humans , Dabigatran/pharmacology , Dabigatran/therapeutic use , Thrombin/metabolism , Factor Xa Inhibitors/pharmacology , Blood Coagulation Factors/pharmacology , Thromboplastin/metabolism , Colorectal Neoplasms/drug therapy , Cell Proliferation
2.
Immunology ; 163(1): 105-111, 2021 05.
Article in English | MEDLINE | ID: mdl-33502012

ABSTRACT

Whether resident and recruited myeloid cells may impair or aid healing of acute skin wounds remains a debated question. To begin to address this, we examined the importance of CD11c+ myeloid cells in the early activation of skin wound repair. We find that an absence of CD11c+ cells delays wound closure and epidermal proliferation, likely due to defects in the activation of the IL-23-IL-22 axis that is required for wound healing.


Subject(s)
CD11 Antigens/deficiency , Dendritic Cells/immunology , Skin/immunology , Wound Healing , Wounds and Injuries/immunology , Animals , CD11 Antigens/genetics , Dendritic Cells/metabolism , Disease Models, Animal , Kinetics , Langerhans Cells/immunology , Langerhans Cells/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Skin/metabolism , Skin/pathology , Wounds and Injuries/genetics , Wounds and Injuries/metabolism , Wounds and Injuries/pathology
3.
Eur J Med Res ; 25(1): 68, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33308282

ABSTRACT

BACKGROUND: The number of patients undergoing flexible ureterenoscopy (FURS) for the treatment of kidney stones (renal calculi) is increasing annually, and as such the development of post-operative complications, such as acute kidney injury (AKI), haematuria and infection is likely to increase. Phagocytic leukocytes are white blood cells that help fight foreign material such as bacteria and viruses, and they are intrinsically involved in the inflammatory reaction. Investigating the role of phagocytic leukocytes following FURS has not been widely researched. The main aim of the study was to evaluate the role phagocytic leukocytes (neutrophils and monocytes) function, in patients undergoing FURS for the treatment of kidney stones (renal calculi). METHODS: Fourteen consecutive patients aged between 27 and 70 years (median 49.5 years) undergoing FURS for the treatment of kidney stones were recruited (seven males, seven females). Blood samples were collected from each patient at four time points: baseline (pre-operatively) followed by 30, 120 and 240 min post-operatively. Mononuclear (MN) and polymorphonuclear (PMN) leukocyte sub-populations were isolated by density gradient centrifugation techniques. Neutrophil and monocyte cell function was investigated by measuring the cell surface expression of CD62L (L-selectin), CD11b (Mac-1), CD99 and the intracellular production of hydrogen peroxide (H2O2), via flow cytometry. RESULTS: Significant increases was observed in monocyte CD62L expression post FURS for the treatment of kidney stones (p ≤ 0.05); while significant decreases were observed in neutrophil CD62L. The levels of the other activation markers CD11b, CD99 and H2O2 corresponded to the increases and decreases seen in CD62L for monocytes and neutrophils respectively, though the changes were not statistically significant (p > 0.05). Limiting factors for this study were the relatively small sample size, and restriction on the recruitment time points. CONCLUSIONS: This study demonstrates that following FURS for the treatment of kidney stones, monocytes are rapidly activated and produce potent reactive oxygen intermediates. Interestingly, the pattern of expression in neutrophils suggests that these cells are deactivated in response to the treatment. The leukocyte biomarkers assessed during this investigation may have a role in monitoring the 'normal' post-operative response, as no complications occurred in any of the patients; or may help predict potential infectious complications (e.g. urosepsis) that can occur during the post-operative period. This data, however, will need to be validated and reproduced in larger multi-centre studies.


Subject(s)
Kidney Calculi/surgery , Leukocytes/physiology , Ureteroscopy/methods , 12E7 Antigen/metabolism , Adult , Aged , CD11b Antigen/metabolism , Cell Separation , Female , Humans , Hydrogen Peroxide/metabolism , Kidney Calculi/pathology , L-Selectin/metabolism , Male , Middle Aged , Monocytes/physiology , Neutrophils/metabolism , Neutrophils/physiology , Phagocytosis , Pilot Projects , Ureteroscopy/adverse effects
4.
BMC Urol ; 20(1): 187, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33238953

ABSTRACT

BACKGROUND: Bladder cancer (BC) is the 10th most common cancer in the UK, with about 10,000 new cases annually. About 75-85% of BC are non-muscle invasive (NMIBC), which is associated with high recurrence and progression rates (50-60% within 7-10 years). There are no routine biomarkers currently available for identifying BC patients at increased risk of developing recurrence. The focus of this research study was to evaluate antibody expression in BC patients and their association with cancer recurrence. METHODS: 35 patients scheduled for TURBT were recruited after written informed consent. Ethical approval for the project was granted via IRAS (REC4: 14/WA/0033). Following surgical procedure, tissues were preserved in 10% buffered formalin and processed within 24 h in FFPE blocks. 7 sections (4 µm each) were cut from each block and stained for CD31, Human epidermal growth factor receptor-2 (HER-2), S100P, Cyclooxygenase-2 (COX-2), VEGFR-3 thrombomodulin and CEACAM-1 using immunohistochemistry. Clinical outcome measures (obtained via cystoscopy) were monitored for up to 6 months following surgical procedure. RESULTS: There was significantly increased expression of CD31 (p < 0.001), HER-2 (p = 0.032), S100P (p < 0.001), COX-2 (p < 0.001), VEGFR-3 (p < 0.001) and decreased expression of thrombomodulin (p = 0.010) and CEACAM-1 (p < 0.001) in bladder tumours compared to normal bladder tissues. HER-2 expression was also significantly associated with cancer grade (p = 0.003), especially between grade 1 and grade 2 (p = 0.002) and between grade 1 and grade 3 (p = 0.004). There was also a significant association between cancer stage and HER-2 expression (p < 0.001). Although recurrence was significantly associated with cancer grade, there was no association with antibody expression. CONCLUSION: Findings from the present study may indicate an alternative approach in the monitoring and management of patients with BC. It is proposed that by allowing urological surgeons access to laboratory markers such as HER-2, Thrombomodulin and CD31 (biomarker profile), potentially, in the future, these biomarkers may be used in addition to, or in combination with, currently used scoring systems to predict cancer recurrence. However, verification and validation of these biomarkers are needed using larger cohorts.


Subject(s)
Antibody Formation , Neoplasm Recurrence, Local/immunology , Urinary Bladder Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies
5.
BMC Urol ; 20(1): 122, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32795278

ABSTRACT

BACKGROUND: The number of patients diagnosed and subsequently treated for kidney stones is increasing, and as such the number of post-operative complications is likely to increase. At present, little is known about the role of specific biomarkers, following flexible ureterorenoscopy (FURS) for the surgical treatment of kidney stones. The main aim of the study was to evaluate the role of kidney and infection biomarkers, in patients undergoing FURS. METHODS: Included were 37 patients (24 males, 13 females), who underwent elective FURS, for the treatment of kidney stones. Venous blood samples were collected from each patient: pre-operatively, and at 30 min, 2 and 4 h post-operatively. Changes to kidney (NGAL, Cystatin-C) and infection (MPO, PCT) biomarkers was quantified by means of ELISA, Biomerieux mini-vidas and Konelab 20 analysers. RESULTS: Four patients developed post-operative complications (3 - UTIs with urinary retention, 1 - urosepsis. NGAL concentration increased significantly following FURS (p = 0.034). Although no significant changes were seen in Cystatin C, MPO and PCT (p ≥ 0.05) some key clinical observation were noted. Limiting factors for this study were the small number of patients recruited and restriction in blood sampling beyond 4 h. CONCLUSIONS: Although not confirmative, changes seen to biomarkers such as Cystatin C, NGAL and MPO in our observational clinical pilot-study may warrant further investigation, involving larger cohorts, to fully understand the role of these biomarkers and their potential association with post-operative complications which can develop following FURS.


Subject(s)
Kidney Calculi/surgery , Postoperative Complications/blood , Postoperative Complications/epidemiology , Ureteroscopy , Urinary Tract Infections/blood , Urinary Tract Infections/epidemiology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Female , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Ureteroscopes , Ureteroscopy/methods
6.
J Mammary Gland Biol Neoplasia ; 24(3): 245-256, 2019 09.
Article in English | MEDLINE | ID: mdl-31529195

ABSTRACT

Triple negative breast cancer (TNBC) is the most lethal breast cancer subtype. Extended periods of lactation protect against breast cancer development, but the mechanisms underlying this protection are unknown. We examined the effects of the milk protein alpha-casein over expression in the triple negative MDA-MB-231 breast cancer cell line. The effects of recombinant alpha-casein added exogenously to MDA-MB-231 breast cancer cells, and immortalised human fibroblasts were also investigated. We used transcriptional reporters to understand the signalling pathways downstream of alpha-casein in breast cancer cells and these fibroblasts that were activated by breast cancer cells. To extend our findings to the clinical setting, we analysed public gene expression datasets to further understand the relevance of these signalling pathways in triple negative breast cancer cells and patient samples. Finally, we used small molecular inhibitors to target relevant pathways and highlight these as potential candidates for the treatment of TN breast cancer. High levels of alpha-casein gene expression were predictive of good prognosis across 263 TNBC patient tumour samples. Alpha-casein over expression or exogenous addition reduces cancer stem cell (CSC) activity. HIF-1alpha was identified to be a key downstream target of alpha-casein, in both breast cancer cells and activated fibroblasts, and STAT transcription factors to be upstream of HIF-1alpha. Interestingly, HIF-1alpha is regulated by STAT3 in breast cancer cells, but STAT1 is the regulator of HIF-1alpha in activated fibroblasts. In analysis of 573 TNBC patient samples, alpha-casein expression, inversely correlated to HIF-1alpha, STAT3 and STAT1. STAT1 and STAT3 inhibitors target HIF-1alpha signalling in activated fibroblasts and MDA-MB-231 breast cancer cells respectively, and also abrogate CSC activities. Our findings provide an explanation for the protective effects of lactation in TNBC. Clinical data correlates high alpha-casein expression with increased recurrence-free survival in TNBC patients. Mechanistically, alpha-casein reduces breast cancer stem cell activity in vitro, and STAT3 and STAT1 were identified as regulators of pro-tumorigenic HIF-1alpha signalling in breast cancer cells and fibroblasts respectively.


Subject(s)
Biomarkers, Tumor/metabolism , Caseins/metabolism , Fibroblasts/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/pathology , STAT3 Transcription Factor/metabolism , Triple Negative Breast Neoplasms/pathology , Biomarkers, Tumor/genetics , Caseins/genetics , Cell Proliferation , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neoplastic Stem Cells/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Cells, Cultured
7.
Chem Sci ; 10(17): 4673-4683, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31123578

ABSTRACT

Photoactivation of photosensitisers can be utilised to elicit the production of ROS, for potential therapeutic applications, including the destruction of diseased tissues and tumours. A novel class of photosensitiser, exemplified by DC324, has been designed possessing a modular, low molecular weight and 'drug-like' structure which is bioavailable and can be photoactivated by UV-A/405 nm or corresponding two-photon absorption of near-IR (800 nm) light, resulting in powerful cytotoxic activity, ostensibly through the production of ROS in a cellular environment. A variety of in vitro cellular assays confirmed ROS formation and in vivo cytotoxic activity was exemplified via irradiation and subsequent targeted destruction of specific areas of a zebrafish embryo.

8.
ACS Chem Biol ; 14(3): 369-377, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30707838

ABSTRACT

Retinoids, such as all- trans-retinoic acid (ATRA), are endogenous signaling molecules derived from vitamin A that influence a variety of cellular processes through mediation of transcription events in the cell nucleus. Because of these wide-ranging and powerful biological activities, retinoids have emerged as therapeutic candidates of enormous potential. However, their use has been limited, to date, due to a lack of understanding of the complex and intricate signaling pathways that they control. We have designed and synthesized a family of synthetic retinoids that exhibit strong, intrinsic, solvatochromatic fluorescence as multifunctional tools to interrogate these important biological activities. We utilized the unique photophysical characteristics of these fluorescent retinoids to develop a novel in vitro fluorometric binding assay to characterize and quantify their binding to their cellular targets, including cellular retinoid binding protein II (CRABPII). The dihydroquinoline retinoid, DC360, exhibited particularly strong binding ( Kd = 34.0 ± 2.5 nM), and we further used X-ray crystallography to determine the structure of the DC360-CRABPII complex to 1.8 Å, which showed that DC360 occupies the known hydrophobic retinoid binding pocket. Finally, we used confocal fluorescence microscopy to image the cellular behavior of the compounds in cultured human epithelial cells, highlighting a fascinating nuclear localization, and used RNA sequencing to confirm that the compounds regulate cellular processes similar to those of ATRA. We anticipate that the unique properties of these fluorescent retinoids can now be used to cast new light on the vital and highly complex retinoid signaling pathway.


Subject(s)
Fluorescent Dyes/chemistry , Retinoids/metabolism , Retinol-Binding Proteins, Cellular/metabolism , Tretinoin/chemistry , Tretinoin/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , Drug Design , Humans , Hydrophobic and Hydrophilic Interactions , Optical Imaging/methods , Protein Binding , Protein Conformation , Signal Transduction
9.
Anticancer Res ; 38(5): 2635-2642, 2018 05.
Article in English | MEDLINE | ID: mdl-29715083

ABSTRACT

BACKGROUND/AIM: Tissue factor (TF) expression increases cancer stem cell (CSC) activity in breast and lung cancer. There are ongoing studies focused on targeting CSCs via anti-TF treatment, for breast and lung cancer therapy. Herein, the aim was to determine whether targeting TF could have an anti-CSC therapeutic role in colorectal cancer (CRC). MATERIALS AND METHODS: Evaluation of colonosphere-forming efficiency (CFE) and aldehyde dehydrogenase (ALDH) expression level was used to quantify CSC activity in two CRC cell lines, after TF knockdown (TFKD) or TF over-expression (TFOE). RESULTS: TFKD resulted in increased levels of ALDH in SW620 (1.31±0.04-fold, p<0.001) and DLD-1 (1.63±0.14-fold, p=0.04) cells. CFE was increased in SW620 (1.21±0.23% vs. 2.03±0.29%, p=0.01) and DLD-1 (0.41±0.12% vs. 0.68±0.9%, p=0.01) cells. Conversely, TFOE decreased ALDH expression (0.72±0.04-fold, p=0.001) and CFE (0.33±0.05% vs. 0.66±0.14%, p=0.006) in DLD-1, but had no impact on SW620 cells. CONCLUSION: In the examined CRC cell lines, TF expression was inversely related to CSC activity suggesting that anti-TF therapies may not have a role in CRC treatment.


Subject(s)
Colorectal Neoplasms/pathology , Neoplastic Stem Cells/pathology , Thromboplastin/physiology , Aldehyde Dehydrogenase/analysis , Biomarkers, Tumor , Cell Division , Cell Line, Tumor , Gene Knockdown Techniques , Genetic Vectors/pharmacology , Humans , Lentivirus/genetics , Neoplastic Stem Cells/metabolism , RNA Interference , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Spheroids, Cellular , Thromboplastin/antagonists & inhibitors , Thromboplastin/genetics
10.
PLoS One ; 12(7): e0179599, 2017.
Article in English | MEDLINE | ID: mdl-28683066

ABSTRACT

BACKGROUND: Currently there is limited research documenting the changes in blood parameters, following Flexible Ureterorenoscopy. This study aims to determine whether there are any changes in haematology and biochemistry parameters, following Flexible Ureterorenoscopy for the treatment of kidney stones. METHODS: 40 consecutive patients aged between 27-87 years (median 49 years) undergoing Flexible Ureterorenoscopy for the treatment of kidney stones were recruited (26 male, 14 female). Blood samples were collected from each patient at four time points: baseline (pre-operatively) followed by 30 minutes, 120 minutes and 240 minutes post-operatively. On these samples, routine haematological and biochemistry tests were carried out. In addition to the assessment of clinical parameters prospectively from the medical notes. RESULTS: There was a significant decrease observed following Flexible Ureterorenoscopy in the following parameters: lymphocytes (p = 0.007), eosinophils (p = 0.001), basophils (p = 0.001), haemoglobin (p = 0.002), red blood cells (p = 0.001), platelet count (p = 0.001), fibrinogen concentration (p = 0.001), von Willebrand factor (p = 0.046), C reactive protein (p = 0.01), total protein (p = 0.001), albumin (p = 0.001), globulin (p = 0.001) and alkaline phosphatase (p = 0.001). In addition, there was a significant increase observed in the following parameters: white blood cells (p = 0.001), neutrophils (p = 0.001), activated partial thromboplastin time (p = 0.001), total bilirubin (p = 0.012), creatinine (p = 0.008), sodium (p = 0.002) and potassium (p = 0.001). Limiting factors for this study were the sample size, and restriction on the recruitment time points. CONCLUSIONS: Significant changes were noted to occur in haematology and biochemistry parameters following Flexible Ureterorenoscopy. Some of the data presented in this study may represent the 'normal' post-operative response following FURS, as no major complications occurred, in the majority of our patients. This data on the 'normal response' will need to be validated but may ultimately aid clinicians in distinguishing patients at risk of complications, if reproduced in larger multi-centre studies.


Subject(s)
Kidney Calculi/blood , Kidney/surgery , Lithotripsy, Laser/methods , Ureteroscopy/methods , Adult , Aged , Aged, 80 and over , Alkaline Phosphatase/blood , Blood Cell Count , C-Reactive Protein/metabolism , Erythrocyte Indices , Female , Fibrinogen/metabolism , Humans , Kidney/pathology , Kidney Calculi/pathology , Kidney Calculi/surgery , Lithotripsy, Laser/instrumentation , Male , Middle Aged , Pilot Projects , Serum Albumin/metabolism , Ureteroscopy/instrumentation , von Willebrand Factor/metabolism
11.
Aging (Albany NY) ; 8(8): 1593-607, 2016 08.
Article in English | MEDLINE | ID: mdl-27344270

ABSTRACT

Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-µM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/- CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties.


Subject(s)
Antitubercular Agents/pharmacology , Cell Proliferation/drug effects , Diarylquinolines/pharmacology , Mitochondria/drug effects , Neoplastic Stem Cells/drug effects , Cell Survival/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , MCF-7 Cells , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Oxidative Stress/drug effects , Oxygen Consumption/drug effects
12.
Oncotarget ; 7(23): 34084-99, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27136895

ABSTRACT

Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 µM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/- CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 µM) is >50 times less than its average serum concentration in humans.


Subject(s)
Antineoplastic Agents/pharmacology , Atovaquone/pharmacology , Neoplastic Stem Cells/drug effects , Oxidative Phosphorylation/drug effects , Antimalarials/pharmacology , Drug Repositioning , Electron Transport Complex III/antagonists & inhibitors , Humans , MCF-7 Cells
14.
Nat Commun ; 7: 11394, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27099134

ABSTRACT

Notch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal. Epidermal Notch induces recruitment of immune cell subsets including RORγ(+) ILC3s into wounded dermis; RORγ(+) ILC3s are potent sources of IL17F in wounds and control immunological and epidermal cell responses. Mice deficient for RORγ(+) ILC3s heal wounds poorly resulting from delayed epidermal proliferation and macrophage recruitment in a CCL3-dependent process. Notch1 upregulates TNFα and the ILC3 recruitment chemokines CCL20 and CXCL13. TNFα, as a Notch1 effector, directs ILC3 localization and rates of wound healing. Altogether these findings suggest that Notch is a key stress/injury signal in skin epithelium driving innate immune cell recruitment and normal skin tissue repair.


Subject(s)
Epidermis/immunology , Immunity, Innate , Lymphocyte Subsets/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Receptor, Notch1/immunology , Wounds, Penetrating/immunology , Animals , Cell Movement/immunology , Chemokine CCL20/genetics , Chemokine CCL20/immunology , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Epidermis/injuries , Female , Gene Expression Regulation , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/deficiency , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Receptor, Notch1/genetics , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Wound Healing/genetics , Wound Healing/immunology , Wounds, Penetrating/genetics , Wounds, Penetrating/pathology
15.
Oncotarget ; 6(31): 30453-71, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26421711

ABSTRACT

Here, we developed an isogenic cell model of "stemness" to facilitate protein biomarker discovery in breast cancer. For this purpose, we used knowledge gained previously from the study of the mouse mammary tumor virus (MMTV). MMTV initiates mammary tumorigenesis in mice by promoter insertion adjacent to two main integration sites, namely Int-1 (Wnt1) and Int-2 (Fgf3), which ultimately activates Wnt/ß-catenin signaling, driving the propagation of mammary cancer stem cells (CSCs). Thus, to develop a humanized model of MMTV signaling, we over-expressed WNT1 and FGF3 in MCF7 cells, an ER(+) human breast cancer cell line. We then validated that MCF7 cells over-expressing both WNT1 and FGF3 show a 3.5-fold increase in mammosphere formation, and that conditioned media from these cells is also sufficient to promote stem cell activity in untransfected parental MCF7 and T47D cells, as WNT1 and FGF3 are secreted factors. Proteomic analysis of this model system revealed the induction of i) EMT markers, ii) mitochondrial proteins, iii) glycolytic enzymes and iv) protein synthesis machinery, consistent with an anabolic CSC phenotype. MitoTracker staining validated the expected WNT1/FGF3-induced increase in mitochondrial mass and activity, which presumably reflects increased mitochondrial biogenesis. Importantly, many of the proteins that were up-regulated by WNT/FGF-signaling in MCF7 cells, were also transcriptionally over-expressed in human breast cancer cells in vivo, based on the bioinformatic analysis of public gene expression datasets of laser-captured patient samples. As such, this isogenic cell model should accelerate the discovery of new biomarkers to predict clinical outcome in breast cancer, facilitating the development of personalized medicine.Finally, we used mitochondrial mass as a surrogate marker for increased mitochondrial biogenesis in untransfected MCF7 cells. As predicted, metabolic fractionation of parental MCF7 cells, via MitoTracker staining, indicated that high mitochondrial mass is a new metabolic biomarker for the enrichment of anabolic CSCs, as functionally assessed by mammosphere-forming activity. This observation has broad implications for understanding the role of mitochondrial biogenesis in the propagation of stem-like cancer cells. Technically, this general metabolic approach could be applied to any cancer type, to identify and target the mitochondrial-rich CSC population.The implications of our work for understanding the role of mitochondrial metabolism in viral oncogenesis driven by random promoter insertions are also discussed, in the context of MMTV and ALV infections.


Subject(s)
Biomarkers, Tumor/physiology , Breast Neoplasms/pathology , Fibroblast Growth Factor 3/biosynthesis , Mitochondria/physiology , Wnt1 Protein/biosynthesis , Culture Media, Conditioned/pharmacology , Female , Fibroblast Growth Factor 3/metabolism , Humans , MCF-7 Cells , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/pathogenicity , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Models, Biological , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Spheroids, Cellular/cytology , Tumor Cells, Cultured , Wnt Signaling Pathway/physiology , Wnt1 Protein/metabolism
16.
Oncotarget ; 6(26): 21892-905, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26323205

ABSTRACT

Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(-) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive cancer cells. Based on our proteomics and functional analysis, FDA-approved inhibitors of protein synthesis and/or mitochondrial biogenesis, may represent novel treatment options for targeting these anabolic stem-like cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Telomerase/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Mitochondria/genetics , Proteomics/methods , Telomerase/genetics , Up-Regulation
17.
Oncotarget ; 6(16): 14005-25, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26087309

ABSTRACT

DNA-PK is an enzyme that is required for proper DNA-repair and is thought to confer radio-resistance in cancer cells. As a consequence, it is a high-profile validated target for new pharmaceutical development. However, no FDA-approved DNA-PK inhibitors have emerged, despite many years of drug discovery and lead optimization. This is largely because existing DNA-PK inhibitors suffer from poor pharmacokinetics. They are not well absorbed and/or are unstable, with a short plasma half-life. Here, we identified the first FDA-approved DNA-PK inhibitor by "chemical proteomics". In an effort to understand how doxycycline targets cancer stem-like cells (CSCs), we serendipitously discovered that doxycycline reduces DNA-PK protein expression by nearly 15-fold (> 90%). In accordance with these observations, we show that doxycycline functionally radio-sensitizes breast CSCs, by up to 4.5-fold. Moreover, we demonstrate that DNA-PK is highly over-expressed in both MCF7- and T47D-derived mammospheres. Interestingly, genetic or pharmacological inhibition of DNA-PK in MCF7 cells is sufficient to functionally block mammosphere formation. Thus, it appears that active DNA-repair is required for the clonal expansion of CSCs. Mechanistically, doxycycline treatment dramatically reduced the oxidative mitochondrial capacity and the glycolytic activity of cancer cells, consistent with previous studies linking DNA-PK expression to the proper maintenance of mitochondrial DNA integrity and copy number. Using a luciferase-based assay, we observed that doxycycline treatment quantitatively reduces the anti-oxidant response (NRF1/2) and effectively blocks signaling along multiple independent pathways normally associated with stem cells, including STAT1/3, Sonic Hedgehog (Shh), Notch, WNT and TGF-beta signaling. In conclusion, we propose that the efficacy of doxycycline as a DNA-PK inhibitor should be tested in Phase-II clinical trials, in combination with radio-therapy. Doxycycline has excellent pharmacokinetics, with nearly 100% oral absorption and a long serum half-life (18-22 hours), at a standard dose of 200-mg per day. In further support of this idea, we show that doxycycline effectively inhibits the mammosphere-forming activity of primary breast cancer samples, derived from metastatic disease sites (pleural effusions or ascites fluid). Our results also have possible implications for the radio-therapy of brain tumors and/or brain metastases, as doxycycline is known to effectively cross the blood-brain barrier. Further studies will be needed to determine if other tetracycline family members also confer radio-sensitivity.


Subject(s)
Breast Neoplasms/radiotherapy , DNA-Activated Protein Kinase/antagonists & inhibitors , Doxycycline/pharmacology , Neoplastic Stem Cells/radiation effects , Radiation-Sensitizing Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Down-Regulation/drug effects , Female , Humans , MCF-7 Cells , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Proteomics/methods
18.
Oncotarget ; 6(16): 14687-99, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26008983

ABSTRACT

Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Macrophages/metabolism , Monocytes/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Female , Humans , Middle Aged
19.
Oncotarget ; 6(7): 4585-601, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25671304

ABSTRACT

We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than "bulk" cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to the inhibition of protein synthesis, using multiple independent approaches. Our findings have important clinical implications, since they may also explain the positive therapeutic effects of PI3-kinase inhibitors and AKT inhibitors, as they ultimately converge on mTOR signaling and would block protein synthesis. We conclude that inhibition of mRNA translation by pharmacological or protein/methionine restriction may be effective strategies for eliminating TICs. Our data also indicate a novel mechanism by which caloric/protein restriction may reduce tumor growth, by targeting protein synthesis in anabolic tumor-initiating cancer cells.


Subject(s)
Biomimetics , Caloric Restriction , Neoplastic Stem Cells/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Cell Proliferation/drug effects , Female , Humans , Immunosuppressive Agents/pharmacology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Puromycin/pharmacology , Sirolimus/pharmacology , Tumor Cells, Cultured
20.
Oncotarget ; 6(7): 4569-84, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25625193

ABSTRACT

Here, we propose a new strategy for the treatment of early cancerous lesions and advanced metastatic disease, via the selective targeting of cancer stem cells (CSCs), a.k.a., tumor-initiating cells (TICs). We searched for a global phenotypic characteristic that was highly conserved among cancer stem cells, across multiple tumor types, to provide a mutation-independent approach to cancer therapy. This would allow us to target cancer stem cells, effectively treating cancer as a single disease of "stemness", independently of the tumor tissue type. Using this approach, we identified a conserved phenotypic weak point - a strict dependence on mitochondrial biogenesis for the clonal expansion and survival of cancer stem cells. Interestingly, several classes of FDA-approved antibiotics inhibit mitochondrial biogenesis as a known "side-effect", which could be harnessed instead as a "therapeutic effect". Based on this analysis, we now show that 4-to-5 different classes of FDA-approved drugs can be used to eradicate cancer stem cells, in 12 different cancer cell lines, across 8 different tumor types (breast, DCIS, ovarian, prostate, lung, pancreatic, melanoma, and glioblastoma (brain)). These five classes of mitochondrially-targeted antibiotics include: the erythromycins, the tetracyclines, the glycylcyclines, an anti-parasitic drug, and chloramphenicol. Functional data are presented for one antibiotic in each drug class: azithromycin, doxycycline, tigecycline, pyrvinium pamoate, as well as chloramphenicol, as proof-of-concept. Importantly, many of these drugs are non-toxic for normal cells, likely reducing the side effects of anti-cancer therapy. Thus, we now propose to treat cancer like an infectious disease, by repurposing FDA-approved antibiotics for anti-cancer therapy, across multiple tumor types. These drug classes should also be considered for prevention studies, specifically focused on the prevention of tumor recurrence and distant metastasis. Finally, recent clinical trials with doxycycline and azithromycin (intended to target cancer-associated infections, but not cancer cells) have already shown positive therapeutic effects in cancer patients, although their ability to eradicate cancer stem cells was not yet appreciated.


Subject(s)
Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Mitochondria/drug effects , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Humans , Mitochondria/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...