Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 379(2193): 20190414, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33517875

ABSTRACT

Satellite-based measuring systems are making it possible to monitor deformation of the Earth's surface at a high spatial resolution over periods of several decades and a significant fraction of the seismic cycle. It is widely assumed that this short-term deformation directly reflects the long-term pattern of crustal deformation, although modified in detail by local elastic effects related to locking on individual faults. This way, short-term deformation is often jointly inverted with long-term estimates of fault slip rates, or even stress, over periods of 10 s to 100 s kyrs. Here, I examine the relation between these two timescales of deformation for subduction, continental shortening and rifting tectonic settings, with examples from the active New Zealand and Central Andean plate boundary zone. I show that the relation is inherently non-unique, and simple models of locking on a deep-seated megathrust or decollement, or mantle flow, provide excellent fits to the short-term observations without requiring any information about the geometry and rate of surface faulting. The short-term deformation, in these settings at least, cannot be used to determine the behaviour of individual faults, but instead places constraints on the forces that drive deformation. Thus, there is a fundamental difference between the stress loading and stress relief parts of the earthquake cycle, with failure determined by dynamical rather than kinematic constraints; the same stress loading can give rise to widely different modes of long-term deformation, depending on the strength and rheology of the deforming zone, and the role of gravitational stresses. The process of slip on networks of active faults may have an intermediate timescale of kyrs to 10 s kyrs, where individual faults fail piecemeal without any characteristic behaviour. Physics-based dynamical models of short-term deformation may be the best way to make full use of the increasing quality of this type of data in the future. This article is part of a discussion meeting issue 'Understanding earthquakes using the geological record'.

2.
Sci Adv ; 6(22): eaba7118, 2020 May.
Article in English | MEDLINE | ID: mdl-32518829

ABSTRACT

New passive- and active-source seismic experiments reveal unusually high mantle P-wave speeds that extend beneath the remnants of the world's largest known large igneous province, making up the 120-million-year-old Ontong-Java-Manihiki-Hikurangi Plateau. Sub-Moho Pn phases of ~8.8 ± 0.2 km/s are resolved with negligible azimuthal seismic anisotropy, but with strong radial anisotropy (~10%), characteristic of aggregates of olivine with an AG crystallographic fabric. These seismic results are the first in situ evidence for this fabric in the upper mantle. We show that its presence can be explained by isotropic horizontal dilation and vertical flattening due to late-stage gravitational collapse and spreading in the top 10 to 20 km of a depleted, mushroom-shaped, superplume head on a horizontal length scale of 1000 km or more. This way, it provides a seismic tool to track plumes long after the thermal effects have ceased.

3.
PLoS One ; 15(4): e0228357, 2020.
Article in English | MEDLINE | ID: mdl-32275662

ABSTRACT

Increasingly, studies are revealing that endocrine disrupting chemicals (EDCs) can alter animal behavior. Early life exposure to EDCs may permanently alter phenotypes through to adulthood. In addition, the effects of EDCs may not be isolated to a single generation - offspring may indirectly be impacted, via non-genetic processes. Here, we analyzed the effects of paternal atrazine exposure on behavioral traits (distance moved, exploration, bottom-dwelling time, latency to enter the top zone, and interaction with a mirror) and whole-brain mRNA of genes involved in the serotonergic system regulation (slc6a4a, slc6a4b, htr1Aa, htr1B, htr2B) of zebrafish (Danio rerio). F0 male zebraFIsh were exposed to atrazine at 0.3, 3 or 30 part per billion (ppb) during early juvenile development, the behavior of F1 progeny was tested at adulthood, and the effect of 0.3 ppb atrazine treatment on mRNA transcription was quantified. Paternal exposure to atrazine significantly reduced interactions with a mirror (a proxy for aggression) and altered the latency to enter the top zone of a tank in unexposed F1 offspring. Bottom-dwelling time (a proxy for anxiety) also appeared to be somewhat affected, and activity (distance moved) was reduced in the context of aggression. slc6a4a and htr1Aa mRNA transcript levels were found to correlate positively with anxiety levels in controls, but we found that this relationship was disrupted in the 0.3 ppb atrazine treatment group. Overall, paternal atrazine exposure resulted in alterations across a variety of behavioral traits and showed signs of serotonergic system dysregulation, demonstrating intergenerational effects. Further research is needed to explore transgenerational effects on behavior and possible mechanisms underpinning behavioral effects.


Subject(s)
Behavior, Animal/drug effects , Herbicides/toxicity , Paternal Exposure , Serotonin/metabolism , Zebrafish/physiology , Animals , Atrazine/toxicity , Crosses, Genetic , Exploratory Behavior/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish/genetics , Zebrafish/growth & development
4.
Nature ; 547(7661): 84-88, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28682337

ABSTRACT

Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift-processes that are also likely to occur in oceanic spreading centres.

5.
Nature ; 425(6960): 792-7, 2003 Oct 23.
Article in English | MEDLINE | ID: mdl-14574402

ABSTRACT

Causal links between the rise of a large mountain range and climate have often been considered to work in one direction, with significant uplift provoking climate change. Here we propose a mechanism by which Cenozoic climate change could have caused the rise of the Andes. Based on considerations of the force balance in the South American lithosphere, we suggest that the height of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and by buoyancy stress contrasts between the trench and highlands, and shear stresses in the subduction zone depend on the amount of subducted sediments. We propose that the dynamics of subduction and mountain-building in this region are controlled by the processes of erosion and sediment deposition, and ultimately climate. In central South America, climate-controlled sediment starvation would then cause high shear stress, focusing the plate boundary stresses that support the high Andes.

6.
Nature ; 420(6912): 130-1, 2002 Nov 14.
Article in English | MEDLINE | ID: mdl-12432370
7.
Nature ; 362(6418): 294-295, 1993 Mar 25.
Article in English | MEDLINE | ID: mdl-29633995
SELECTION OF CITATIONS
SEARCH DETAIL
...