Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 358: 142130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685320

ABSTRACT

Phosphorus (P) and Ammonium Nitrogen (N) are essential nutrients for plants and environmental stability. However, their excess in water causes eutrophication, damaging aquatic ecosystems. While adsorption is a promising solution, finding affordable and efficient adsorbents remains a challenge. In this study, magnesium (Mg), iron (Fe), and Mg/Fe doped biochars (BC) adsorbents were synthesized, and evaluated for adsorption of individual P and N and a P + N mixture from a solution and wastewater from a wastewater treatment plant. Compared to other adsorbents, Mg/BC showed excellent performance in adsorbing phosphorus (P) and ammonium nitrogen (N) from aqueous solutions. It demonstrated a large adsorption capacity of 64.65 mg/g and 62.50 mg/g from individual P and N solutions, and 30.3 mg/g and 27.67 mg/g from the P and N mixture solution, respectively. In addition, Mg/BC efficiently removed P and N from real-life wastewater. In the real wastewater, P and N removal efficiencies reached 88.30% and 59.36%, respectively. Kinetics analysis revealed that the pseudo-second-order model accurately described the adsorption of phosphorus (P) and ammonium nitrogen (N) in all solutions. The adsorbent followed the monolayer-Langmuir isotherm for N ions and the multilayer-Freundlich isotherm for P, indicating efficient adsorption processes. Thermodynamic experiments indicated that the adsorption of P and N was not only feasible but also occurred spontaneously in a natural manner. This study revealed that the strategic modification of biochar plays a crucial role in advancing effective wastewater treatment technologies designed for nutrient removal.


Subject(s)
Charcoal , Magnesium , Nitrogen , Phosphates , Wastewater , Water Pollutants, Chemical , Charcoal/chemistry , Adsorption , Nitrogen/chemistry , Magnesium/chemistry , Water Pollutants, Chemical/chemistry , Phosphates/chemistry , Wastewater/chemistry , Kinetics , Waste Disposal, Fluid/methods , Phosphorus/chemistry , Water Purification/methods
2.
Heliyon ; 9(9): e19830, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810020

ABSTRACT

Efficient treatment of nutrient-rich wastewater is of paramount importance for protecting the ecosystem. In this work, an efficient, abundant, and eco-friendly adsorbent was derived from biochar and employed for phosphorus (P) adsorption. The key factors influencing the P removal efficiency of the activated biochar, including P concentration, pH, dosage, temperature, adsorption time, and influence of co-existing ion type, were investigated. Maximum P adsorption percentage (100%) was obtained with 10 mg/L and zinc chloride activated biochar (BC-Zn) compared to the other activated biochars. Results show that by increasing the P concentration from 5 to 200 mg/L, the phosphorus adsorption capacity increases from 0.13 to 10.4 mg/g biochar. Isotherms and kinetic studies further show that the P adsorption follows the Langmuir and quasi-second-order kinetic models. The mechanistic investigation demonstrated that P adsorption occurred by precipitation reaction. Furthermore, P desorption has been studied at different time intervals to understand the P release rate after adsorption.

3.
Sci Total Environ ; 865: 161119, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36581281

ABSTRACT

Recent observations and climate change projections indicate that changes in rainfall energy, intensity, duration, and frequency, which determine the erosive power of rainfall, will amplify erosion rates around the world. However, the magnitude and scope of these future changes in erosive power of rainfall remain largely unknown, particularly at finer-resolutions and local scales. Due to a lack of available projected future sub-hourly climate data, previous studies relied on aggregates (hourly, daily) rainfall data. The erosivity for the southeastern United States in this study was calculated using the RUSLE2 erosivity calculation method without data limitation and a recently published 15-min precipitation dataset. This precipitation data was derived from five NA-CORDEX climate models' precipitation products under the Representative Concentration Pathway (RCP) 8.5 scenario. In this dataset, hourly climate projections of precipitation were bias-corrected and temporally downscaled to 15-min resolution for 187 locations with collocated 15-min precipitation observations. Precipitation, erosivity (R-factor), and erosivity density (ED) estimations were provided for historical (1970-1999) and future (2030-2059) time periods. Ensemble results for projected values (as compared to historical values) showed increase in precipitation, erosivity, and erosivity density by 14 %, 47 %, and 29 %, respectively. The future ensemble model showed an average annual R-factor of 11,237±1299 MJ mm ha-1h-1yr-1. These findings suggest that changes in rainfall intensity, rather than precipitation amount, may be driving the change in erosivity. However, the bias correction and downscaling limitations inherent in the original precipitation dataset and this study's analyses obscured this particular result. In general, coastal and mountainous regions are expected to experience the greatest absolute increase in erosivity, while other inland areas are expected to experience the greatest relative change. This study offers a novel examination of projected future precipitation characteristics in terms of erosivity and potential future erosion.

4.
Sci Data ; 9(1): 211, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577792

ABSTRACT

Climate change impacts on precipitation characteristics will alter the hydrologic characteristics, such as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently available climate change datasets are provided at temporal and spatial resolutions that are inadequate to quantify projected changes in hydrologic characteristics of a watershed. Therefore, it is critical to temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to precipitation characteristics. In this study, we generated novel 15-minute precipitation datasets from hourly precipitation datasets obtained from five NA-CORDEX downscaled climate models under RCP 8.5 scenario for the historical (1970-1999) and projected (2030-2059) years over the Southeast United States using a modified version of the stochastic method. The results showed conservation of mass of the precipitation inputs. Furthermore, the probability of zero precipitation, variance of precipitation, and maximum precipitation in the disaggregated data matched well with the observed precipitation characteristics. The generated 15-minute precipitation data can be used in all scientific studies that require precipitation data at that resolution.

5.
J Environ Qual ; 48(4): 950-958, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589695

ABSTRACT

Agricultural water quality projects in two distinct topographic regions in Wisconsin collected 5 to 10 yr of continuous stream discharge, suspended sediment (SS), total P (TP), and total dissolved P (TDP) in four watersheds (2100-5000 ha) from 2006 to 2016. Previous agricultural nonpoint SS and TP reduction efforts in two of these watersheds documented cold versus warm season differences in water quality response. The goal of this study was to identify seasonal partitioning of SS, TP, and TDP in storm event loads to inform stream water quality protection efforts. We used National Weather Service Coop Observer frost depth reports to identify dates when watershed soils were frozen. By comparing daily mean event discharge for dates relative to frost, we identified a 32-d post-frost high-discharge "thaw" period. Combined, the frozen and thaw periods contributed about half of the annual SS and TP runoff event loads, ranging from 47 to 63% for SS and from 45 to 51% for TP. The proportion of runoff event TDP during this time was even higher, 62 to 79%, with the majority during thaw. Watershed average volumetric runoff coefficients (event flow/precipitation and snowmelt) were two to four times higher during the freeze and the thaw compared with the rest of the year. To reduce total stream loads in regions with similar climates to Wisconsin, this study indicates that using management practices that curb sediment and P delivery to streams in the winter and early spring may be as important as those designed for nonfrozen conditions.


Subject(s)
Agriculture , Phosphorus , Environmental Monitoring , Seasons , Water Movements , Water Quality , Wisconsin
6.
J Environ Qual ; 42(5): 1574-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24216435

ABSTRACT

Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate.


Subject(s)
Fertilizers , Manure , Animals , Chickens , Phosphorus , Poultry , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...