Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34406391

ABSTRACT

WNT signalling is important for development in all metazoans and is associated with various human diseases. The ubiquitin-proteasome system (UPS) and regulatory endoplasmic reticulum-associated degradation (ERAD) have been implicated in the production of WNT proteins. Here, we investigated how the WNT secretory factor EVI (also known as WLS) is ubiquitylated, recognised by ERAD components and subsequently removed from the secretory pathway. We performed a focused immunoblot-based RNAi screen for factors that influence EVI/WLS protein stability. We identified the VCP-binding proteins FAF2 and UBXN4 as novel interaction partners of EVI/WLS and showed that ERLIN2 links EVI/WLS to the ubiquitylation machinery. Interestingly, we also found that EVI/WLS is ubiquitylated and degraded in cells irrespective of their level of WNT production. This K11, K48 and K63-linked ubiquitylation is mediated by the E2 ubiquitin-conjugating enzymes UBE2J2, UBE2K and UBE2N, but is independent of the E3 ubiquitin ligases HRD1 (also known as SYVN1) and GP78 (also known as AMFR). Taken together, our study identifies factors that link the UPS to the WNT secretory pathway and provides mechanistic details of the fate of an endogenous substrate of regulatory ERAD in mammalian cells. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum , Animals , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Sci Transl Med ; 12(560)2020 09 09.
Article in English | MEDLINE | ID: mdl-32908004

ABSTRACT

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.


Subject(s)
Parkinson Disease , Dopaminergic Neurons , Exons/genetics , Humans , Mutation/genetics , Parkinson Disease/drug therapy , Parkinson Disease/genetics , RNA Splicing
3.
Biotechnol Biofuels ; 6(1): 2, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23311728

ABSTRACT

BACKGROUND: While simultaneous saccharification and co-fermentation (SSCF) is considered to be a promising process for bioconversion of lignocellulosic materials to ethanol, there are still relatively little demo-plant data and operating experiences reported in the literature. In the current work, we designed a SSCF process and scaled up from lab to demo scale reaching 4% (w/v) ethanol using xylose rich corncobs. RESULTS: Seven different recombinant xylose utilizing Saccharomyces cerevisiae strains were evaluated for their fermentation performance in hydrolysates of steam pretreated corncobs. Two strains, RHD-15 and KE6-12 with highest ethanol yield and lowest xylitol yield, respectively were further screened in SSCF using the whole slurry from pretreatment. Similar ethanol yields were reached with both strains, however, KE6-12 was chosen as the preferred strain since it produced 26% lower xylitol from consumed xylose compared to RHD-15. Model SSCF experiments with glucose or hydrolysate feed in combination with prefermentation resulted in 79% of xylose consumption and more than 75% of the theoretical ethanol yield on available glucose and xylose in lab and PDU scales. The results suggest that for an efficient xylose conversion to ethanol controlled release of glucose from enzymatic hydrolysis and low levels of glucose concentration must be maintained throughout the SSCF. Fed-batch SSCF in PDU with addition of enzymes at three different time points facilitated controlled release of glucose and hence co-consumption of glucose and xylose was observed yielding 76% of the theoretical ethanol yield on available glucose and xylose at 7.9% water insoluble solids (WIS). With a fed-batch SSCF in combination with prefermentation and a feed of substrate and enzymes 47 and 40 g l-1 of ethanol corresponding to 68% and 58% of the theoretical ethanol yield on available glucose and xylose were produced at 10.5% WIS in PDU and demo scale, respectively. The strain KE6-12 was able to completely consume xylose within 76 h during the fermentation of hydrolysate in a 10 m3 demo scale bioreactor. CONCLUSIONS: The potential of SSCF is improved in combination with prefermentation and a feed of substrate and enzymes. It was possible to successfully reproduce the fed-batch SSCF at demo scale producing 4% (w/v) ethanol which is the minimum economical requirement for efficient lignocellulosic bioethanol production process.

SELECTION OF CITATIONS
SEARCH DETAIL
...