Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Bone Miner Metab ; 41(4): 492-500, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37039892

ABSTRACT

INTRODUCTION: The bone-specific physical activity questionnaire (BPAQ) provides a bone-relevant index of physical activity participation according to the mechanical loads experienced across the life span. MATERIALS AND METHODS: We aimed to examine relationships between historical bone-relevant physical activity and pQCT-derived parameters of bone strength. We recruited 532 healthy volunteers (277 males, 255 females) across a broad age range (4-97 years). Peripheral quantitative computed tomography (XCT-3000, Stratec, Germany) was used to examine volumetric bone density, area, and strength indices of the non-dominant tibia and radius. Exercise loading history from birth was determined using the past BPAQ (pBPAQ) score. Pearson correlation analysis was used to examine relationships between pBPAQ scores and pQCT parameters. RESULTS: Independent of sex, pBPAQ scores were associated with total density at the 38% and 66% tibial sites and the 66% radial site (r = 0.145-0.261, p ˂ 0.05), total area at the 38% tibial site and 4% and 66% radial sites (r = 0.129-0.156, p ˂ 0.05), and strength indices at all measured sites (r = 0.123-0.234, p < 0.05). CONCLUSION: We conclude that, independent of sex, historical bone-relevant physical activity is associated with pQCT-derived indices of bone strength, indicating that pBPAQ captures the characteristics of bone loading history that are likely to be relevant adaptive stimuli. A larger sample is required to examine the influence of age on this relationship.


Subject(s)
Bone Density , Bone and Bones , Male , Female , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Cross-Sectional Studies , Exercise , Tibia/diagnostic imaging , Radius/diagnostic imaging , Surveys and Questionnaires
2.
Sports Health ; 15(5): 638-644, 2023.
Article in English | MEDLINE | ID: mdl-36457193

ABSTRACT

BACKGROUND: People with femoroacetabular with femoroacetabular impingement syndrome (FAIS) often report pain during sports involving repeated sprinting. It remains unclear how sports participation influences running biomechanics in individuals with FAIS. HYPOTHESIS: Changes in running biomechanics and/or isometric hip strength after repeated sprint exercise would be greatest in individuals with FAIS compared with asymptomatic individuals with (CAM) and without cam morphology (Control). STUDY DESIGN: Controlled laboratory study. LEVEL OF EVIDENCE: Level 3. METHODS: Three-dimensional hip biomechanics during maximal running (10 m) and hip strength were measured in 49 recreationally active individuals (FAIS = 15; CAM = 16; Control = 18) before and after repeated sprint exercise performed on a nonmotorized treadmill (8-16 × 30 m). Effects of group and time were assessed for biomechanics and strength variables with repeated-measures analyses of variance. Relationships between hip pain (Copenhagen Hip and Groin Outcome Score) and changes in hip moments and strength after repeated sprint exercise were determined using Spearman's correlation coefficients (ρ). RESULTS: Running speed, hip flexion angles, hip flexion and extension moments, and hip strength in all muscle groups were significantly reduced from pre to post. No significant between-group differences were observed before or after repeated sprint exercise. No significant relationships (ρ = 0.04-0.30) were observed between hip pain and changes in hip moments or strength in the FAIS group. CONCLUSION: Changes in running biomechanics and strength after repeated sprint exercise did not differ between participants with FAIS and asymptomatic participants with and without cam morphology. Self-reported pain did not appear to influence biomechanics during running or strength after repeated sprint exercise in participants with FAIS. CLINICAL RELEVANCE: A short bout of repeated sprinting may not elicit changes in running biomechanics in FAIS beyond what occurs in those without symptoms. Longer duration activities or activities requiring greater hip flexion angles may better provoke pathology-related changes in running biomechanics in people with FAIS.

3.
J Strength Cond Res ; 35(9): 2504-2510, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-31403570

ABSTRACT

ABSTRACT: Lambert, C, Beck, BR, and Weeks, BK. Landing impact intensities for jumping exercises from the OPTIMA-Ex trial in trained and untrained women. J Strength Cond Res 35(9): 2504-2510, 2021-High-intensity mechanical loads are required to elicit a positive adaptive bone response. Our aim was to quantify the mechanical loads of impact exercises used in each progressive stage of a bone-targeted exercise intervention (the OPTIMA-Ex trial) and to investigate differences in mechanical loads between untrained and trained subjects. A randomized repeated measures experimental design was used to quantify and compare the mechanical loads, including vertical ground reaction force (vGRF) and the rate of loading (RoL) of the landing phase, of all impact exercises applied in the OPTIMA-Ex trial and to determine the load intensity for each training stage of the impact intervention. Fifteen healthy young adult women aged 18-30 years (mean 23.1 ± 3.5 years) were recruited (5 trained and 10 untrained). Overall, vGRF was classified as high impact (>4 times body mass [BM]) for all 7 training stages (4.70 ± 1.89 to 6.79 ± 2.17 BM), whereas RoL ranged from 207.01 ± 175.09 to 371.52 ± 393.43 BM·s-1 across the stages. Furthermore, a significant time effect was observed between training stages for vGRF/BM (p = 0.001) and RoL (p < 0.001). Trained subjects exhibited greater impact loads than untrained subjects for activities at every training stage (p < 0.01). We found that impact activities at every stage of the OPTIMA-Ex trial not only met the GRF criteria for high intensity but also exhibited progressive increases in load for successive stages. Furthermore, trained subjects were capable of producing greater impact loads than untrained subjects.


Subject(s)
Exercise Therapy , Exercise , Female , Humans
4.
Bone ; 136: 115362, 2020 07.
Article in English | MEDLINE | ID: mdl-32289518

ABSTRACT

INTRODUCTION: Few data exist on the effects of bone-targeted exercise on geometric and biomechanical indices of bone strength in men. The Lifting Intervention For Training Muscle and Osteoporosis Rehabilitation for Men (LIFTMOR-M) trial was designed to compare the efficacy and safety of two novel, supervised, twice-weekly, high-intensity exercise programs in middle-aged and older men with osteopenia and osteoporosis on musculoskeletal health and risk factors related to falls and fractures. The current report includes secondary outcomes of the LIFTMOR-M exercise intervention trial. PURPOSE: Our goal was to determine the effects of two supervised, twice-weekly, high-intensity exercise programs on bone geometry and strength of the proximal femur, and distal and proximal sites of the tibia and radius in middle-aged and older men with osteopenia and osteoporosis. METHODS: Generally-healthy men (≥45 years), with low lumbar spine (LS) and/or proximal femur areal bone mineral density (aBMD), were recruited from the community. Eligible participants were randomised to either eight months of twice-weekly supervised high-intensity progressive resistance and impact training (HiRIT) or supervised machine-based isometric axial compression (IAC) exercise training. Intervention group outcomes were compared at baseline and eight months with a matched but non-randomised control group (CON) who self-selected to usual activities. DXA scans (Medix DR, Medilink, France) of the skeletally non-dominant proximal femur were analysed using 3D hip software (DMS Group, France) to derive femoral neck (FN) and total hip (TH) bone mineral content (BMC), volume, and volumetric bone mineral density (vBMD) for total, trabecular and cortical bone compartments. Total FN cortical thickness was determined as well as anterior, posterior, lateral and medial subregions. pQCT scans (XCT-3000, Stratec, Germany) of the 4 and 38% sites of the tibia, and 4 and 66% sites of the radius were conducted to determine a range of geometric and bone structural strength indices. Intervention effects were examined using univariate ANCOVA of percent change, and repeated measures ANCOVA of raw baseline and follow-up data, controlling for initial values, using intention-to-treat and per-protocol approaches. RESULTS: Ninety-three men (67.1 ± 7.5 yrs, 175.2 ± 6.7 cm, 82.1 ± 11.6 kg, 26.7 ± 3.5 kg/m2) with lower than average aBMD (LS T-score -0.06 ± 1.04, FN T-score -1.58 ± 0.58, TH T-score -1.00 ± 0.58) were recruited, and designated CON (n = 26) or randomised to HiRIT (n = 34) or IAC (n = 33). Compliance to the supervised exercise programs did not differ (HiRIT 77.8 ± 16.6% versus IAC 78.5 ± 14.8%, p = 0.872). HiRIT improved medial FN cortical thickness compared with CON (5.6 ± 1.7% versus -0.1 ± 1.9%, p = 0.028) and IAC (5.6 ± 1.7% versus 0.7 ± 1.7%, p = 0.044). Distal tibia total BMC, vBMD, area and bone strength index, and trabecular BMC and bone strength index all declined for CON compared with maintenance for both HiRIT and IAC (all p < 0.05). HiRIT maintained distal tibia trabecular area compared with a loss in CON (0.2 ± 0.5% versus -1.6 ± 0.5%, p = 0.013). HiRIT and IAC maintained distal radius total BMC compared with loss in CON (-0.1 ± 0.7% versus -3.7 ± 0.8%, p = 0.001; 1.3 ± 0.7% versus -3.7 ± 0.8%, p < 0.001, respectively). HiRIT and IAC maintained distal radius total bone strength index compared with loss in CON (1.4 ± 1.4% versus -6.0 ± 1.6%, p = 0.001; 0.2 ± 1.3% versus -6.0 ± 1.6%, p = 0.004, respectively). HiRIT reduced proximal radius cortical area compared with CON (-3.1 ± 1.0% versus 1.1 ± 1.2%, p = 0.011) and IAC (-3.1 ± 1.0% versus -0.2 ± 1.0%, p = 0.042). No between-group differences were detected in any pQCT-derived bone outcome at the diaphyseal tibia 38% site. CONCLUSION: Findings indicate that supervised HiRIT provides a positive stimulus to cortical bone at the medial FN compared with supervised IAC exercise, and both HiRIT and IAC preserve bone strength at the distal tibia and distal radius. These effects may translate into a reduced risk of lower and upper extremity fracture in middle-aged and older men with low bone mass.


Subject(s)
Osteoporosis , Absorptiometry, Photon , Aged , Bone Density , France , Germany , Humans , Male , Middle Aged , Muscles , Radius , Tibia
5.
J Bone Miner Res ; 35(8): 1404-1414, 2020 08.
Article in English | MEDLINE | ID: mdl-32176813

ABSTRACT

The Lifting Intervention For Training Muscle and Osteoporosis Rehabilitation for Men (LIFTMOR-M) trial examined efficacy and safety of two novel exercise programs in older men with low BMD. Men with low hip and/or LS BMD were randomized to high-intensity progressive resistance and impact training (HiRIT) or machine-based isometric axial compression (IAC) and compared to a nonrandomized matched control (CON). Outcomes included: hip and LS BMD; calcaneal ultrasound parameters; anthropometry; body composition; function (timed up-and-go [TUG], five-times sit-to-stand [FTSTS]); back extensor strength (BES); leg extensor strength (LES); compliance and adverse events. Ninety-three men (67.1 ± 7.5 years; 82.1 ± 11.6 kg; 175.2 ± 6.7 cm; FN T-score -1.6 ± 0.6) were randomized to HiRIT (n = 34) or IAC (n = 33), or allocated to CON (n = 26). HiRIT improved trochanteric BMD (2.8 ± 0.8%; -0.1 ± 0.9%, p = .024), LS BMD (4.1 ± 0.7%; 0.9 ± 0.8%, p = .003), BUA (2.2 ± 0.7%; -0.8 ± 0.9%, p = .009), stiffness index (1.6 ± 0.9%; -2.0 ± 1.1%, p = .011), lean mass (1.5 ± 0.8%; -2.4 ± 0.9%, p = .002), TUG, FTSTS, BES, and LES (p < .05) compared with CON. IAC improved lean mass (0.8 ± 0.8%; -2.4 ± 0.9%, p = .013) and FTSTS (-4.5 ± 1.6%; 7.5 ± 2.0%, p < .001) compared with CON. HiRIT improved LS BMD (4.1 ± 0.7%; 2.0 ± 0.7%, p = .039), stiffness index (1.6 ± 0.9%; -1.3 ± 0.9%, p = .025), and FTSTS (-10.7 ± 1.6%; -4.5 ± 1.7%, p = .010) compared with IAC. Exercise compliance was high (HiRIT 77.8 ± 16.6%; IAC 78.5 ± 14.8%, p = .872). There were five minor adverse events (HiRIT, 2; IAC, 3). HiRIT was well-tolerated and improved bone, function and fracture risk more than CON or IAC. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Bone Diseases, Metabolic , Fractures, Bone , Osteoporosis , Aged , Bone Density , Humans , Male , Middle Aged , Muscles
6.
Health Promot J Austr ; 31(3): 369-380, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31943497

ABSTRACT

ISSUE ADDRESSED: Osteoporosis presents a serious public health issue and physical activity is recognised as the most effective modifiable risk factor for the condition. The reasons behind physical activity participation, however, are complex. We therefore aimed to explore the experiences related to a bone-targeted exercise intervention, determine enjoyment and acceptability of each exercise mode, and identify barriers and facilitators to osteogenic exercise for young adult women. METHODS: The present study was conducted within the Osteoporosis Prevention Through Impact and Muscle-loading Approaches to Exercise (OPTIMA-Ex) trial, a three-arm RCT comparing musculoskeletal outcomes from two supervised, high-intensity, exercise programs (impact and resistance training) with an unsupervised low-intensity exercise control. A mixed-methods approach was used, including quality of life and physical activity enjoyment questionnaires and qualitative analysis of semi-structured interviews. RESULTS: All groups had improvements in the 'mental health' domain of the quality of life measure; however, the two supervised exercise groups had greater levels of physical activity enjoyment. The qualitative analysis revealed that overall the trial activities were positively, yet the two supervised groups had 'richer' exercise experiences. Motivations for participation, barriers to physical activity and desired continuation of participation differed between all three groups. CONCLUSIONS: Findings suggest that bone-targeted exercise interventions for young adult women must address perceived time demands and environmental barriers to participation in order to maximise compliance and adherence. SO WHAT?: As physical activity is the most effective lifestyle strategy to improve bone health and young adulthood an important window for its augmentation, increasing convenience, accessibility and understanding of osteoporosis preventative behaviours in this demographic is vital.


Subject(s)
Bone Density , Pleasure , Adult , Exercise , Female , Humans , Motivation , Quality of Life , Young Adult
7.
Bone ; 132: 115192, 2020 03.
Article in English | MEDLINE | ID: mdl-31846824

ABSTRACT

It is well known that the bone response to physical activity is highly dependent on the nature of the loads imposed. Despite this, few direct comparisons of the effect of impact-style loading and resistance training on bone have been made. We therefore aimed to compare the effects of 10-month, twice-weekly, high-impact loading and 10-month, twice-weekly, high-intensity resistance training on indices of bone strength of both the upper and lower limbs of young adult women. Physically inactive, otherwise healthy, young adult women (18-30 years) with below average bone mass (T-score ≤ 0) were recruited as part of the OPTIMA-Ex trial. Testing included DXA- and pQCT-derived measures of bone mass and indices of bone strength and QUS-derived measures of bone quality of the dominant (D) and non-dominant (ND) upper (radius) and lower limbs (femoral neck, tibia, calcaneus). The present study examined those participants who completed the impact training (IT; n = 10) and resistance training (RT; n = 12) arms of the trial. Age differed between groups at baseline (IT = 23.2 ± 3.8 years, RT = 20.5 ± 1.8 years; p = 0.042). Compliance with the training programs did not differ (IT = 61.4 ± 15.1%, RT = 66.4 ± 11.2%, p = 0.381). Age and baseline differences in bone outcomes served as covariates for repeated measures and univariate ANCOVA conducted for dependent variables and percent change respectively. IT improved distal pQCT-derived bone mineral density (BMD) of the upper limb (ND radius: total BMD = 8.55 ± 2.26% versus 1.50 ± 2.04%, p = 0.040 and trabecular BMD = 1.86 ± 0.90% versus -1.30 ± 0.81%, p = 0.029) and lower limb (ND tibia trabecular BMD = 1.22 ± 0.55% versus -0.82 ± 0.50%, p = 0.017), more than RT. IT also improved upper limb bone strength index (BSI) (ND radius total BSI = 15.35 ± 2.83% versus 2.67 ± 2.55, p = 0.005) and lower limb BSI (D tibia total BSI = 5.16 ± 1.13% versus 0.37 ± 1.02%, p = 0.008; D tibia trabecular BSI = 3.93 ± 1.76% versus -2.84 ± 1.59, p = 0.014, ND tibia trabecular BSI = 3.57 ± 1.63% versus -3.15 ± 1.48%, p = 0.009) more than RT. Conversely, RT improved DXA-derived cortical volumetric BMD at the femoral neck more than IT (3.68 ± 1.99% versus -4.14 ± 2.20%, p = 0.021). Results suggest that IT and RT provide differing site-specific effects in both the upper and lower limbs, with superior bone responses observed at the distal segment from IT, while RT appeared to have greater effect on the shaft of the bone, on indices of bone-strength in young adult women.


Subject(s)
Resistance Training , Adult , Bone Density , Exercise , Female , Humans , Lower Extremity/diagnostic imaging , Radius/diagnostic imaging , Tibia/diagnostic imaging , Young Adult
8.
J Strength Cond Res ; 32(3): 675-680, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29112053

ABSTRACT

Lambert, C, Beck, BR, and Weeks, BK. Concurrent validity and reliability of a linear positional transducer and an accelerometer to measure punch characteristics. J Strength Cond Res 32(3): 675-680, 2018-Punch speed is an important factor in the sport of boxing, and its measurement has important implications for monitoring training progression and outcomes. The aim of the current study was to establish the concurrent validity and reliability of a linear positional transducer and an accelerometer for the quantification of punch characteristics in untrained adults. Men and women aged 18-30 years with no previous boxing experience and no upper-limb musculoskeletal injuries were recruited. Participants performed 6 straight right punches; 3 at a self-determined 50% effort; and 3 at maximum effort. An accelerometer (Crossbow) and a linear positional transducer (GymAware) were used to examine peak velocity and acceleration of each punch. Validity was examined using Pearson's correlation analyses and by calculating mean bias and limits of agreement between measures from each device, whereas reliability was established using intraclass correlation coefficients (ICCs). Forty-four healthy young adults (28M and 16F; age 22.2 ± 2.9 years) participated. Moderate-to-strong positive associations were observed for both devices at 50% effort for velocity (r = 0.572-0.696) and acceleration (r = 0.867-0.921) and at maximum effort for velocity (r = 0.748-0.781) and acceleration (r = 0.897-0.946). High levels of reliability were observed with maximum punches for both devices (ICC = 0.922-0.981). Overall, moderate-strong measurement validity and reliability for punch speed was observed between the accelerometer and GymAware. Thus, the GymAware linear positional transducer is an acceptable measurement tool for the quantification of punch speed for straight punches in untrained adults.


Subject(s)
Accelerometry/standards , Boxing , Acceleration , Adolescent , Adult , Female , Humans , Male , Reproducibility of Results , Transducers , Young Adult
9.
BMJ Open ; 7(9): e016983, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28864705

ABSTRACT

INTRODUCTION: The aim of the Osteoporosis Prevention Through Impact and Muscle-loading Approaches to Exercise trial is to compare the bone response to two known osteogenic stimuli - impact loading exercise and resistance training. Specifically, we will examine the effect of a 10-month, twice-weekly, high-intensity impact loading exercise intervention and a 10-month, twice-weekly, high-intensity resistance training intervention on bone mass and strength at clinically important skeletal sites. The intervention groups will be compared against a home-based 'positive' control group. Safety and acceptability of each exercise modality will also be determined. METHODS AND ANALYSIS: Sedentary otherwise healthy young women aged 18-30 years with bone mineral density (BMD) T-scores less than or equal to 0 at the hip and lumbar spine, screened for conditions and medications that influence bone and physical function, will be recruited. Eligible participants are randomised to 10-month, twice-weekly, either supervised high-intensity impact training, high-intensity resistance training or a home-based 'positive' control group. The primary outcome measure will be lumbar spine areal BMD, while secondary outcome measures will include: whole body, femoral neck and regional measures (upper and lower limb) of bone, muscle and fat; anthropometrics; muscle strength and power; quality of life and exercise safety, enjoyment and acceptability. All outcome measures will be conducted at baseline (T0) and 10 months (T10) and will be analysed according to the intention-to-treat principle and per protocol. ETHICS AND DISSEMINATION: The study has been granted ethical approval from the Griffith University Human Research Ethics Committee (GU Ref: 2015/775). Standard scientific reporting practices will occur, including publication in peer-reviewed journals. Participant confidentiality will be maintained in all forms of reporting. TRIAL REGISTRATION NUMBER: ACTRN12616001444471.


Subject(s)
Bone Density , Exercise , Lumbar Vertebrae/metabolism , Osteoporosis/prevention & control , Resistance Training , Adolescent , Adult , Boxing , Female , Femur Neck/metabolism , Humans , Movement , Muscle Strength , Osteoporosis/metabolism , Research Design , Weight-Bearing , Young Adult
10.
J Strength Cond Res ; 29(9): 2532-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26308830

ABSTRACT

High-load resistance-based exercise is a common approach to facilitating improved neuromuscular performance via postactivation potentiation. Popular field-based warm-up activities, however, have been largely overlooked despite their specificity and practicality for sports performance. Therefore, the aim of this study was to investigate the effect of repeated bouts of alternating lunges on neuromuscular performance determined by a maximal vertical jump (VJ). Forty-three healthy young adults (24 women and 19 men: age, 25.6 ± 4.4 years) participated in the study. Maximal VJ performance was quantified by jump height (in centimeters), relative impulse (in N·s·kg), flight time (in seconds), and normalized peak vertical ground reaction force (GRFz, bodyweight [BW]) at baseline and after each of 6 sets of 20 alternate split lunges. A rating of perceived exertion (1-10 scale) was recorded from participants before each VJ. Jump height was greater than baseline for the first 4 trials (3.1-3.8%, p ≤ 0.05), but no difference to baseline was observed on subsequent trials. Although there were no improvements for relative impulse over repeated trials, the sixth trial was significantly smaller than baseline (2.35 ± 0.38 vs. 2.26 ± 0.35 N·s·kg; p ≤ 0.001). Similarly, no improvements were observed for flight time, although the first, fourth, fifth, and sixth trials were reduced compared with baseline performance (p ≤ 0.01). No differences were observed for peak vertical GRFz (p > 0.05). In conclusion, a regimen of lunging exercise resulted in a transient improvement in maximal VJ performance. However, measures of flight time, impulse, and GRFz did not mirror the performance gain in jump height.


Subject(s)
Athletic Performance/physiology , Muscle, Skeletal/physiology , Warm-Up Exercise/physiology , Adolescent , Adult , Female , Humans , Male , Physical Exertion/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...