Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 23(40): 405604, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22990089

ABSTRACT

We investigate colloidal Fe(3)O(4) nanocrystals as a catalyst system for carbon nanotube (CNT) growth that allows for decoupling the CNT growth step from the catalyst shaping and activation step. The system consists of 6.4 nm Fe(3)O(4) nanocrystals synthesized using a solution-based thermal decomposition reaction and, subsequently, transferred as hexagonally ordered Langmuir-Blodgett (LB) monolayers on TiN substrates. We demonstrate for the first time aligned CNT growth from LB deposited nanocrystals on a metallic underlayer. The hexagonally ordered monolayers of catalyst particles show promising stability up to the CNT growth temperature. In situ TEM heating experiments were performed to find this onset of particle deformation and showed stability of the nanoparticles up to 600 °C. The particle coalescence at high temperatures was also evidenced by the increasing CNT diameter, from 9.5 nm at 580 °C to 16 nm at 630 °C. By choosing to work at temperatures below the onset particle coalescence temperature, equivalent CNT diameters were obtained under different catalyst activation and growth conditions. The high stability of the catalyst on the metallic underlayer enables us to study CNT growth kinetics independently of the catalyst shaping step. This work opens a route towards combining growth studies with an electrical evaluation of the CNT growth as the TiN can be used as the bottom contact.

2.
Angew Chem Int Ed Engl ; 50(50): 12058-61, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22012637
3.
ACS Nano ; 5(1): 58-66, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21189031

ABSTRACT

We present a quantitative analysis of the absorption and luminescence of colloidal PbSe/CdSe core/shell quantum dots (QDs). In absorption, both the energy and the oscillator strength of the first exciton transition coincide with that of plain PbSe QDs. In contrast, luminescence lifetime measurements indicate that the oscillator strength of the emitting transition is reduced by at least a factor of 4 compared to PbSe core QDs. Moreover, the addition of an electron scavenger quenches the PbSe/CdSe emission, while a hole scavenger does not. This implies that the electron wave function reaches the QD surface, while the hole is confined to the PbSe core. These observations are consistent with calculations based on the effective mass model, which show that PbSe/CdSe QDs are at the boundary between the type-I and quasi-type-II regime, where the electron spreads over the entire nanoparticle and the hole remains confined in the PbSe core. However, as this only leads to a minor reduction of the oscillator strength, it follows that the drastic reduction of the oscillator strength in emission cannot be explained in terms of electron delocalization. In combination with the increased Stokes shift for PbSe/CdSe QDs, this indicates that the emission results from lower energy states that are fundamentally different from the absorbing states.

4.
Nanotechnology ; 21(29): 295606, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20601759

ABSTRACT

Monolayers of PbSe and PbS quantum dots and PbSe/CdSe core/shell quantum dots made by Langmuir-Blodgett deposition are compared, with a focus on the formation, the morphology and the photoluminescence properties of the films. It is shown that PbSe quantum dots suffer from oriented attachment and a complete quenching of their photoluminescence after Langmuir-Blodgett processing. While the oriented attachment can be resolved by growing a CdSe shell around the PbSe core QDs, the photoluminescence of PbSe/CdSe Langmuir-Blodgett monolayers remains largely quenched. In the case of PbS quantum dots, the formation of a close-packed monolayer is more difficult, yet the resulting films show no sign of oriented attachment and their photoluminescence is comparable to that of the original, suspended quantum dots. In spite of their slow oxidation in a matter of weeks, these results mark PbS quantum dots as the preferred material for light-emitting applications in the near IR based on Langmuir-Blodgett monolayers of lead chalcogenide quantum dots.

5.
J Am Chem Soc ; 132(29): 10195-201, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20608680

ABSTRACT

We use solution NMR techniques to analyze the organic/inorganic interface of CdSe quantum dots (Q-CdSe) synthesized using oleic acid as a surfactant. It is shown that the resulting Q-CdSe are stabilized by tightly bound oleic acid species that only exchange upon addition of free oleic acid. The NMR analysis points toward a two-step exchange mechanism where free ligands are initially physisorbed within the ligand shell to end up as bound, chemisorbed ligands in a second step. Importantly, we find that every ligand is involved in this exchange process. By addition of oleic acid with a deuterated carboxyl headgroup, we demonstrate that the bound ligands are oleate ions and not oleic acid molecules. This explains why a dynamic adsorption/desorption equilibrium only occurs in the presence of excess free oleic acid, which donates the required proton. Comparing the number of oleate ligands to the excess cadmium per CdSe quantum dot, we find a ratio of 2:1. This completes the picture of Q-CdSe as organic/inorganic entities where the surface excess of Cd(2+) is balanced by a double amount of oleate ligands, yielding overall neutral nanoparticles.

6.
Langmuir ; 26(11): 7732-6, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20121263

ABSTRACT

The application of colloidal nanocrystals in various devices requires their assembly into well-defined mono- or multilayers. We explore the possibilities of the Langmuir-Schaefer technique to make such layers, using CdSe quantum dots as a model system. The layer quality is assessed using atomic force microscopy, transmission electron microscopy, and UV-vis absorption spectroscopy. For hydrophobic substrates, we find that the Langmuir-Schaefer technique is an excellent tool for controlled multilayer production. With hydrophilic substrates, dewetting induces a cellular superstructure. Combination with photolithography leads to micropatterned multilayers, and combination of different nanocrystal sizes allows for the formation of 2D binary superstructures.

7.
ACS Nano ; 3(10): 3023-30, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19780530

ABSTRACT

We quantitatively investigate the size-dependent optical properties of colloidal PbS nanocrystals or quantum dots (Qdots), by combining the Qdot absorbance spectra with detailed elemental analysis of the Qdot suspensions. At high energies, the molar extinction coefficient epsilon increases with the Qdot volume d(3) and agrees with theoretical calculations using the Maxwell-Garnett effective medium theory and bulk values for the Qdot dielectric function. This demonstrates that quantum confinement has no influence on epsilon in this spectral range, and it provides an accurate method to calculate the Qdot concentration. Around the band gap, epsilon only increases with d(1.3), and values are comparable to the epsilon of PbSe Qdots. The data are related to the oscillator strength f(if) of the band gap transition and results agree well with theoretical tight-binding calculations, predicting a linear dependence of f(if) on d. For both PbS and PbSe Qdots, the exciton lifetime tau is calculated from f(if). We find values ranging between 1 and 3 mus, in agreement with experimental literature data from time-resolved luminescence spectroscopy. Our results provide a thorough general framework to calculate and understand the optical properties of suspended colloidal quantum dots. Most importantly, it highlights the significance of the local field factor in these systems.

9.
Chemphyschem ; 9(3): 484-91, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18247439

ABSTRACT

We report a synthesis route for the growth of Co:ZnO/ZnO core/shell quantum dots. This procedure consists of successive steps, comprising the addition of diluted precursor salt solutions, and heat treatment at 50 degrees C. By deriving a relation between the extinction coefficient at 250 nm and the nanocrystal diameter, we are able to monitor changes in quantum dot concentration during shell growth. We found that a mechanism based on the nucleation of new particles after salt addition and subsequent Ostwald ripening during the heat treatment is responsible for the shell growth. Based on ligand-field absorption spectroscopy, we demonstrate that the Co(2+) ions adsorbed at the surface of Co:ZnO quantum dots are incorporated inside the ZnO shells. Finally, EPR spectroscopy indicates that the surface-adsorbed Co(2+) ions can be incorporated as substitutional as well as interstitial Co(2+) ions.


Subject(s)
Cobalt/chemistry , Colloids/chemistry , Nanoparticles/chemistry , Quantum Dots , Zinc Oxide/chemistry , Zinc Oxide/chemical synthesis , Particle Size , Surface Properties
10.
Anal Bioanal Chem ; 383(4): 707-12, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16132138

ABSTRACT

Raman spectroscopy is an analytical technique, which is gaining attention as a molecular technique for the investigation of objects of art. Especially the non-destructive properties of the method make this application suitable for the in situ analysis of artefacts. However, although using mobile, fibre optics Raman instrumentation for this type of research seems to be straightforward, some practical obstacles may hamper the investigation. In this paper, pitfalls and solutions are described when applying a dedicated spectrometer to the analysis of mediaeval wall paintings. It is shown how some practical problems may be overcome, and the results of the analysis are presented. Although the mediaeval wall paintings from the chapel of the castle of Ponthoz are well-preserved, still some interesting degradation phenomena could be observed: the identification of a black degradation product, likely to be meta-cinnabar, a degradation product of the red pigment vermilion (HgS); the formation of gypsum (CaSO4.2H2O) as a weathering product of calcium carbonate (CaCO3); the observation of copper(II)hydroxychlorides.

SELECTION OF CITATIONS
SEARCH DETAIL
...