Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(6): e0158792, 2016.
Article in English | MEDLINE | ID: mdl-27359324

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0156308.].

2.
PLoS One ; 11(6): e0156308, 2016.
Article in English | MEDLINE | ID: mdl-27270222

ABSTRACT

Reducing carbon dioxide (CO2) emissions from power plants can have important "co-benefits" for public health by reducing emissions of air pollutants. Here, we examine the costs and health co-benefits, in monetary terms, for a policy that resembles the U.S. Environmental Protection Agency's Clean Power Plan. We then examine the spatial distribution of the co-benefits and costs, and the implications of a range of cost assumptions in the implementation year of 2020. Nationwide, the total health co-benefits were $29 billion 2010 USD (95% CI: $2.3 to $68 billion), and net co-benefits under our central cost case were $12 billion (95% CI: -$15 billion to $51 billion). Net co-benefits for this case in the implementation year were positive in 10 of the 14 regions studied. The results for our central case suggest that all but one region should experience positive net benefits within 5 years after implementation.


Subject(s)
Air Pollutants , Carbon Dioxide , Carbon Footprint/economics , Environmental Exposure , Models, Economic , Power Plants/economics , Air Pollutants/adverse effects , Air Pollutants/economics , Carbon Dioxide/administration & dosage , Carbon Dioxide/economics , Costs and Cost Analysis , Environmental Exposure/adverse effects , Environmental Exposure/economics , Humans , United States
3.
Rev Environ Health ; 31(1): 17-20, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26820177

ABSTRACT

Mercury (Hg) is a global contaminant whose presence in the biosphere has been increased by human activity, particularly coal burning/energy production, mining, especially artisanal scale gold mining, and other industrial activities. Mercury input to the surface ocean has doubled over the past century leading governments and organizations to take actions to protect humans from the harmful effects of this toxic element. Recently, the UN Environmental Program led 128 countries to negotiate and sign a legally binding agreement, the 2013 Minimata Convention, to control Hg emissions and releases to land and water globally. In an effort to communicate science to this emerging international policy, the Dartmouth Superfund Research Program formed the Coastal and Marine Mercury Ecosystem Research Collaborative (C-MERC) in 2010 that brought together more than 70 scientists and policy experts to analyze and synthesize the science on Hg pollution in the marine environment from Hg sources to MeHg in seafood. The synthesis of the science revealed that the sources and inputs of Hg and their pathways to human exposure are largely determined by ecosystem spatial scales and that these spatial scales determine the organizational level of policies. The paper summarizes the four major findings of the report.


Subject(s)
Environmental Exposure , Mercury/analysis , Environmental Monitoring , Food Contamination/analysis , Humans , Seafood/analysis , Water Pollutants, Chemical/analysis
5.
Environ Res ; 119: 132-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22901766

ABSTRACT

Mercury is a global pollutant and presents policy challenges at local, regional, and global scales. Mercury poses risks to the health of people, fish, and wildlife exposed to elevated levels of mercury, most commonly from the consumption of methylmercury in marine and estuarine fish. The patchwork of current mercury abatement efforts limits the effectiveness of national and multi-national policies. This paper provides an overview of the major policy challenges and opportunities related to mercury in coastal and marine environments, and highlights science and policy linkages of the past several decades. The U.S. policy examples explored here point to the need for a full life cycle approach to mercury policy with a focus on source reduction and increased attention to: (1) the transboundary movement of mercury in air, water, and biota; (2) the coordination of policy efforts across multiple environmental media; (3) the cross-cutting issues related to pollutant interactions, mitigation of legacy sources, and adaptation to elevated mercury via improved communication efforts; and (4) the integration of recent research on human and ecological health effects into benefits analyses for regulatory purposes. Stronger science and policy integration will benefit national and international efforts to prevent, control, and minimize exposure to methylmercury.


Subject(s)
Environmental Policy , Mercury/chemistry , Seawater/chemistry , Water Pollutants/chemistry , Animals , Environmental Exposure , Humans
6.
Environ Health Perspect ; 116(12): 1706-12, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19079724

ABSTRACT

Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences-Superfund Basic Research Program workshop titled "Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure," convened by the Dartmouth Toxic Metals Research Program on 15-16 November 2006 in Durham, New Hampshire, brought together human health experts, marine scientists, and ecotoxicologists to encourage cross-disciplinary discussion between ecosystem and human health scientists and to articulate research and monitoring priorities to better understand how marine food webs have become contaminated with MeHg. Although human health effects of Hg contamination were a major theme, the workshop also explored effects on marine biota. The workgroup focused on three major topics: a) the biogeochemical cycling of Hg in marine ecosystems, b) the trophic transfer and bioaccumulation of MeHg in marine food webs, and c) human exposure to Hg from marine fish and shellfish consumption. The group concluded that current understanding of Hg in marine ecosystems across a range of habitats, chemical conditions, and ocean basins is severely data limited. An integrated research and monitoring program is needed to link the processes and mechanisms of MeHg production, bioaccumulation, and transfer with MeHg exposure in humans.


Subject(s)
Ecosystem , Methylmercury Compounds/toxicity , Seafood , Seawater , Animals , Environmental Exposure , Food Chain , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...