Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826322

ABSTRACT

Rationale: TRPV4 channels are critical regulators of blood vascular function and have been shown to be dysregulated in many disease conditions in association with inflammation and tissue fibrosis. These are key features in the pathophysiology of lymphatic system diseases, including lymphedema and lipedema; however, the role of TRPV4 channels in the lymphatic system remains largely unexplored. TRPV4 channels are calcium permeable, non-selective cation channels that are activated by diverse stimuli, including shear stress, stretch, temperature, and cell metabolites, which may regulate lymphatic contractile function. Objective: To characterize the expression of TRPV4 channels in collecting lymphatic vessels and to determine the extent to which these channels regulate the contractile function of lymphatics. Methods and Results: Pressure myography on intact, isolated, and cannulated lymphatic vessels showed that pharmacological activation of TRPV4 channels with GSK1016790A (GSK101) led to contractile dysregulation. The response to GSK101 was multiphasic and included, 1) initial robust constriction that was sustained for ≥1 minute and in some instances remained for ≥4 minutes; and 2) subsequent vasodilation and partial or complete inhibition of lymphatic contractions associated with release of nitric oxide. The functional response to activation of TRPV4 channels displayed differences across lymphatics from four anatomical regions, but these differences were consistent across different species (mouse, rat, and non-human primate). Importantly, similar responses were observed following activation of TRPV4 channels in arterioles. The initial and sustained constriction was prevented with the COX inhibitor, indomethacin. We generated a controlled and spatially defined single-cell RNA sequencing (scRNAseq) dataset from intact and microdissected collecting lymphatic vessels. Our data uncovered a subset of macrophages displaying the highest expression of Trpv4 compared to other cell types within and surrounding the lymphatic vessel wall. These macrophages displayed a transcriptomic profile consistent with that of tissue-resident macrophages (TRMs), including differential expression of Lyve1 , Cd163 , Folr2 , Mrc1 , Ccl8 , Apoe , Cd209f , Cd209d , and Cd209g ; and at least half of these macrophages also expressed Timd4. This subset of macrophages also highly expressed Txa2s , which encodes the thromboxane A2 (TXA2) synthase. Inhibition of TXA2 receptors (TXA2Rs) prevented TRPV4-mediated contractile dysregulation. TXA2R activation on LMCs caused an increase in mobilization of calcium from intracellular stores through Ip3 receptors which promoted store operated calcium entry and vasoconstriction. Conclusions: Clinical studies have linked cancer-related lymphedema with an increased infiltration of macrophages. While these macrophages have known anti-inflammatory and pro-lymphangiogenic roles, as well as promote tissue repair, our results point to detrimental effects to the pumping capacity of collecting lymphatic vessels mediated by activation of TRPV4 channels in macrophages. Pharmacological targeting of TRPV4 channels in LYVE1-expressing macrophages or pharmacological targeting of TXA2Rs may offer novel therapeutic strategies to improve lymphatic pumping function and lymph transport in lymphedema.

2.
Physiol Rep ; 12(8): e16004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658324

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.


Subject(s)
Arrhythmias, Cardiac , Dystrophin , Myocardial Contraction , Animals , Male , Dystrophin/genetics , Dystrophin/deficiency , Mice , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/genetics , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/metabolism , Mice, Inbred mdx , Mice, Inbred C57BL
3.
Am J Physiol Heart Circ Physiol ; 325(5): H1168-H1177, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37737731

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and is caused by mutations in the dystrophin gene. Dystrophin deficiency is associated with structural and functional changes of the muscle cell sarcolemma and/or stretch-induced ion channel activation. In this investigation, we use mice with transgenic cardiomyocyte-specific expression of the GCaMP6f Ca2+ indicator to test the hypothesis that dystrophin deficiency leads to cardiomyocyte Ca2+ handling abnormalities following preload challenge. α-MHC-MerCreMer-GCaMP6f transgenic mice were developed on both a wild-type (WT) or dystrophic (Dmdmdx-4Cv) background. Isolated hearts of 3-7-mo male mice were perfused in unloaded Langendorff mode (0 mmHg) and working heart mode (preload = 20 mmHg). Following a 30-min preload challenge, hearts were perfused in unloaded Langendorff mode with 40 µM blebbistatin, and GCaMP6f was imaged using confocal fluorescence microscopy. Incidence of premature ventricular complexes (PVCs) was monitored before and following preload elevation at 20 mmHg. Hearts of both wild-type and dystrophic mice exhibited similar left ventricular contractile function. Following preload challenge, dystrophic hearts exhibited a reduction in GCaMP6f-positive cardiomyocytes and an increase in number of cardiomyocytes exhibiting Ca2+ waves/overload. Incidence of cardiac arrhythmias was low in both wild-type and dystrophic hearts during unloaded Langendorff mode. However, after preload elevation to 20-mmHg hearts of dystrophic mice exhibited an increased incidence of PVCs compared with hearts of wild-type mice. In conclusion, these data indicate susceptibility to preload-induced Ca2+ overload, ventricular damage, and ventricular dysfunction in male Dmdmdx-4Cv hearts. Our data support the hypothesis that cardiomyocyte Ca2+ overload underlies cardiac dysfunction in muscular dystrophy.NEW & NOTEWORTHY The mechanisms of cardiac disease progression in muscular dystrophy are complex and poorly understood. Using a transgenic mouse model with cardiomyocyte-specific expression of the GCaMP6f Ca2+ indicator, the present study provides further support for the Ca2+-overload hypothesis of disease progression and ventricular arrhythmogenesis in muscular dystrophy.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Male , Animals , Mice , Dystrophin/genetics , Calcium/metabolism , Mice, Inbred mdx , Myocytes, Cardiac/metabolism , Muscular Dystrophy, Duchenne/genetics , Arrhythmias, Cardiac/metabolism , Mice, Transgenic , Disease Progression , Disease Models, Animal
4.
Cardiovasc Res ; 116(11): 1887-1896, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31693106

ABSTRACT

AIMS: Cardiovascular disease remains the greatest cause of mortality in Americans over 65. The stretch-activated transient receptor potential vanilloid-4 (TRPV4) ion channel is expressed in cardiomyocytes of the aged heart. This investigation tests the hypothesis that TRPV4 alters Ca2+ handling and cardiac function in response to increased ventricular preload and cardiomyocyte stretch. METHODS AND RESULTS: Left ventricular maximal pressure (PMax) was monitored in isolated working hearts of Aged (24-27 months) mice following preload elevation from 5 to 20mmHg, with and without TRPV4 antagonist HC067047 (HC, 1 µmol/L). In preload responsive hearts, PMax prior to and immediately following preload elevation (i.e. Frank-Starling response) was similar between Aged and Aged+HC. Within 1 min following preload elevation, Aged hearts demonstrated secondary PMax augmentation (Aged>Aged+HC) suggesting a role for stretch-activated TRPV4 in cardiac hypercontractility. However, after 20 min at 20 mmHg Aged exhibited depressed PMax (Aged

Subject(s)
Calcium Signaling , Mechanotransduction, Cellular , Myocardial Contraction , Myocytes, Cardiac/metabolism , TRPV Cation Channels/metabolism , Ventricular Function, Left , Age Factors , Aging , Animals , Excitation Contraction Coupling , Female , Isolated Heart Preparation , Male , Mice, Inbred C57BL , Mice, Transgenic , TRPV Cation Channels/genetics , Time Factors , Ventricular Pressure
5.
Cardiovasc Res ; 115(1): 46-56, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29931225

ABSTRACT

Aims: Cardiomyocyte Ca2+ homeostasis is altered with aging via poorly-understood mechanisms. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an osmotically-activated Ca2+ channel, and there is limited information on the role of TRPV4 in cardiomyocytes. Our data show that TRPV4 protein expression increases in cardiomyocytes of the aged heart. The objective of this study was to examine the role of TRPV4 in cardiomyocyte Ca2+ homeostasis following hypoosmotic stress and to assess the contribution of TRPV4 to cardiac contractility and tissue damage following ischaemia-reperfusion (I/R), a pathological condition associated with cardiomyocyte osmotic stress. Methods and results: TRPV4 protein expression increased in cardiomyocytes of Aged (24-27 months) mice compared with Young (3-6 months) mice. Immunohistochemistry revealed TRPV4 localization to microtubules and the t-tubule network of cardiomyocytes of Aged mice, as well as in left ventricular myocardium of elderly patients undergoing surgical aortic valve replacement for aortic stenosis. Following hypoosmotic stress, cardiomyocytes of Aged, but not Young exhibited an increase in action-potential induced Ca2+ transients. This effect was mediated via increased sarcoplasmic reticulum Ca2+ content and facilitation of Ryanodine Receptor Ca2+ release and was prevented by TRPV4 antagonism (1 µmol/L HC067047). A similar hypoosmotic stress-induced facilitation of Ca2+ transients was observed in Young transgenic mice with inducible TRPV4 expression in cardiomyocytes. Following I/R, isolated hearts of Young mice with transgenic TRPV4 expression exhibited enhanced contractility vs. hearts of Young control mice. Similarly, hearts of Aged mice exhibited enhanced contractility vs. hearts of Aged TRPV4 knock-out (TRPV4-/-) mice. In Aged, pharmacological inhibition of TRPV4 (1 µmol/L, HC067047) prevented hypoosmotic stress-induced cardiomyocyte death and I/R-induced cardiac damage. Conclusions: Our findings provide a new mechanism for hypoosmotic stress-induced cardiomyocyte Ca2+ entry and cell damage in the aged heart. These finding have potential implications in treatment of elderly populations at increased risk of myocardial infarction and I/R injury.


Subject(s)
Calcium Signaling , Calcium/metabolism , Myocardial Contraction , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Osmotic Pressure , TRPV Cation Channels/metabolism , Age Factors , Animals , Calcium Signaling/drug effects , Disease Models, Animal , Humans , Mice, Inbred C57BL , Mice, Knockout , Morpholines/pharmacology , Myocardial Contraction/drug effects , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Pyrroles/pharmacology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/pathology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/deficiency , TRPV Cation Channels/genetics
6.
J Appl Physiol (1985) ; 124(4): 1034-1044, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29357490

ABSTRACT

Exercise improves clinical outcomes in patients diagnosed with heart failure with reduced ejection fraction (HFrEF), in part via beneficial effects on cardiomyocyte Ca2+ cycling during excitation-contraction coupling (ECC). However, limited data exist regarding the effects of exercise training on cardiomyocyte function in patients diagnosed with heart failure with preserved ejection fraction (HFpEF). The purpose of this study was to investigate cardiomyocyte Ca2+ handling and contractile function following chronic low-intensity exercise training in aortic-banded miniature swine and test the hypothesis that low-intensity exercise improves cardiomyocyte function in a large animal model of pressure overload. Animals were divided into control (CON), aortic-banded sedentary (AB), and aortic-banded low-intensity trained (AB-LIT) groups. Left ventricular cardiomyocytes were electrically stimulated (0.5 Hz) to assess Ca2+ homeostasis (fura-2-AM) and unloaded shortening during ECC under conditions of baseline pacing and pacing with adrenergic stimulation using dobutamine (1 µM). Cardiomyocytes in AB animals exhibited depressed Ca2+ transient amplitude and cardiomyocyte shortening vs. CON under both conditions. Exercise training attenuated AB-induced decreases in cardiomyocyte Ca2+ transient amplitude but did not prevent impaired shortening vs. CON. With dobutamine, AB-LIT exhibited both Ca2+ transient and shortening amplitude similar to CON. Adrenergic sensitivity, assessed as the time to maximum inotropic response following dobutamine treatment, was depressed in the AB group but normal in AB-LIT animals. Taken together, our data suggest exercise training is beneficial for cardiomyocyte function via the effects on Ca2+ homeostasis and adrenergic sensitivity in a large animal model of pressure overload-induced heart failure. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show chronic low-intensity exercise training can prevent cardiomyocyte dysfunction and impaired adrenergic responsiveness in a translational large animal model of chronic pressure overload-induced heart failure with relevance to human HFpEF.


Subject(s)
Excitation Contraction Coupling , Heart Failure/therapy , Myocardial Contraction , Myocytes, Cardiac/physiology , Physical Conditioning, Animal , Animals , Calcium/metabolism , Male , Swine , Swine, Miniature
7.
Am J Physiol Heart Circ Physiol ; 308(9): H1126-35, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25747754

ABSTRACT

Overnutrition/obesity predisposes individuals, particularly women, to diastolic dysfunction (DD), an independent predictor of future cardiovascular disease. We examined whether low-dose spironolactone (Sp) prevents DD associated with consumption of a Western Diet (WD) high in fat, fructose, and sucrose. Female C57BL6J mice were fed a WD with or without Sp (1 mg·kg(-1)·day(-1)). After 4 mo on the WD, mice exhibited increased body weight and visceral fat, but similar blood pressures, compared with control diet-fed mice. Sp prevented the development of WD-induced DD, as indicated by decreased isovolumic relaxation time and an improvement in myocardial performance (

Subject(s)
Diastole/drug effects , Diet, Western , Heart Ventricles/drug effects , Mineralocorticoid Receptor Antagonists/administration & dosage , Receptors, Mineralocorticoid/drug effects , Spironolactone/administration & dosage , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , Animals , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cardiomegaly/prevention & control , Diet, High-Fat , Dietary Sucrose , Disease Models, Animal , Female , Fibrosis , Fructose , Heart Ventricles/immunology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Receptors, Mineralocorticoid/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Sarcomeres/drug effects , Sarcomeres/metabolism , Sex Factors , Time Factors , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/immunology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Pressure/drug effects , Ventricular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...