Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 616(7957): 461-464, 2023 04.
Article in English | MEDLINE | ID: mdl-36858076

ABSTRACT

On 26 September 2022, the Double Asteroid Redirection Test (DART) spacecraft struck Dimorphos, a satellite of the asteroid 65803 Didymos1. Because it is a binary system, it is possible to determine how much the orbit of the satellite changed, as part of a test of what is necessary to deflect an asteroid that might threaten Earth with an impact. In nominal cases, pre-impact predictions of the orbital period reduction ranged from roughly 8.8 to 17 min (refs. 2,3). Here we report optical observations of Dimorphos before, during and after the impact, from a network of citizen scientists' telescopes across the world. We find a maximum brightening of 2.29 ± 0.14 mag on impact. Didymos fades back to its pre-impact brightness over the course of 23.7 ± 0.7 days. We estimate lower limits on the mass contained in the ejecta, which was 0.3-0.5% Dimorphos's mass depending on the dust size. We also observe a reddening of the ejecta on impact.

2.
J Chem Phys ; 155(12): 120901, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34598575

ABSTRACT

The field of cluster science is drawing increasing attention due to the strong size and composition-dependent properties of clusters and the exciting prospect of clusters serving as the building blocks for materials with tailored properties. However, identifying a unifying central paradigm that provides a framework for classifying and understanding the diverse behaviors is an outstanding challenge. One such central paradigm is the superatom concept that was developed for metallic and ligand-protected metallic clusters. The periodic electronic and geometric closed shells in clusters result in their properties being based on the stability they gain when they achieve closed shells. This stabilization results in the clusters having a well-defined valence, allowing them to be classified as superatoms-thus extending the Periodic Table to a third dimension. This Perspective focuses on extending the superatomic concept to ligated metal-chalcogen clusters that have recently been synthesized in solutions and form assemblies with counterions that have wide-ranging applications. Here, we illustrate that the periodic patterns emerge in the electronic structure of ligated metal-chalcogenide clusters. The stabilization gained by the closing of their electronic shells allows for the prediction of their redox properties. Further investigations reveal how the selection of ligands may control the redox properties of the superatoms. These ligated clusters may serve as chemical dopants for two-dimensional semiconductors to control their transport characteristics. Superatomic molecules of multiple metal-chalcogen superatoms allow for the formation of nano-p-n junctions ideal for directed transport and photon harvesting. This Perspective outlines future developments, including the synthesis of magnetic superatoms.

3.
Mil Med ; 186(Suppl 1): 801-807, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33499536

ABSTRACT

INTRODUCTION: Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds used industrially for a wide variety of applications. These PFAS compounds are very stable and persist in the environment. The PFAS contamination is a growing health issue as these compounds have been reported to impact human health and have been detected in both domestic and global water sources. Contaminated water found on military bases poses a potentially serious health concern for active duty military, their families, and the surrounding communities. Previous detection methods for PFAS in contaminated water samples require expensive and time-consuming testing protocols that limit the ability to detect this important global pollutant. The main objective of this work was to develop a novel detection system that utilizes a biological reporter and engineered bacteria as a way to rapidly and efficiently detect PFAS contamination. MATERIALS AND METHODS: The United States Air Force Academy International Genetically Engineered Machine team is genetically engineering Rhodococcus jostii strain RHA1 to contain novel DNA sequences composed of a propane 2-monooxygenase alpha (prmA) promoter and monomeric red fluorescent protein (mRFP). The prmA promoter is activated in the presence of PFAS and transcribes the mRFP reporter. RESULTS: The recombinant R. jostii containing the prmA promoter and mRFP reporter respond to exposure of PFAS by activating gene expression of the mRFP. At 100 µM of perfluorooctanoic acid, the mRFP expression was increased 3-fold (qRT-PCR). Rhodococcus jostii without exposure to PFAS compounds had no mRFP expression. CONCLUSIONS: This novel detection system represents a synthetic biology approach to more efficiently detect PFAS in contaminated samples. With further refinement and modifications, a similar system could be readily deployed in the field around the world to detect this critical pollutant.


Subject(s)
Synthetic Biology , Drinking Water , Fluorocarbons/analysis , Humans , Rhodococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...