Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 227(12): 1386-1395, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36344485

ABSTRACT

BACKGROUND: Classic scrapie is a prion disease of sheep and goats that is associated with accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the prion disease of cervids. This study was conducted to determine the susceptibility of white-tailed deer (WTD) to the classic scrapie agent. METHODS: We inoculated WTD (n = 5) by means of a concurrent oral/intranasal exposure with the classic scrapie agent from sheep or oronasally with the classic scrapie agent from goats (n = 6). RESULTS: All deer exposed to the agent of classic scrapie from sheep accumulated PrPSc. PrPSc was detected in lymphoid tissues at preclinical time points, and necropsies in deer 28 months after inoculation showed clinical signs, spongiform lesions, and widespread PrPSc in neural and lymphoid tissues. Western blots on samples from the brainstem, cerebellum, and lymph nodes of scrapie-infected WTD have a molecular profile similar to CWD and distinct from samples from the cerebral cortex, retina, or the original classic scrapie inoculum. There was no evidence of PrPSc in any of the WTD inoculated with classic scrapie prions from goats. CONCLUSIONS: WTD are susceptible to the agent of classic scrapie from sheep, and differentiation from CWD may be difficult.


Subject(s)
Deer , Prion Diseases , Scrapie , Wasting Disease, Chronic , Animals , Sheep , Scrapie/metabolism , Scrapie/pathology , Deer/metabolism , Prion Diseases/metabolism , Prion Diseases/veterinary , PrPSc Proteins/metabolism , Wasting Disease, Chronic/metabolism , Goats/metabolism
2.
Vet Res Commun ; 46(4): 1377-1380, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36219301

ABSTRACT

This study examines the effect of various infectious prion titers within the dynamic range as measured by ELISA on incubation period. We inoculated ovinized transgenic mice with seven decreasing dilutions of a fast-incubating scrapie strain. The highest inoculum group was a 20% w/v brain homogenate from a sheep with scrapie. The subsequent six inoculum dilutions ranged from the highest ELISA optical density reading of 4.000 to a dilution where scrapie prions were not detectable by ELISA. Multiple comparison analysis demonstrated variation in the incubation periods between some inoculum groups. Incubation periods were similar between inoculum groups unless their optical density differed by more than ≈2 units of absorbance. These data will inform the interpretation of future studies that compare incubation periods in experimentally inoculated animals for TSE research.


Subject(s)
Prions , Scrapie , Sheep Diseases , Animals , Mice , Brain/metabolism , Enzyme-Linked Immunosorbent Assay/veterinary , Infectious Disease Incubation Period , Mice, Transgenic , Prions/metabolism , Sheep
3.
Viruses ; 13(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34960722

ABSTRACT

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.


Subject(s)
Prion Diseases/metabolism , Prion Proteins/chemistry , Prion Proteins/metabolism , Animals , Humans , Prion Diseases/genetics , Prion Diseases/pathology , Prion Proteins/genetics , Protein Folding , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...