Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38767797

ABSTRACT

BACKGROUND: Percutaneous ventricular assist devices are increasingly relied on to maintain perfusion for cardiogenic shock patients. Optimal medical management strategies however remain uncertain from limited understanding of interventricular effects. This study analyzed the effects of pharmacologic and left-sided mechanical support on right ventricular function. METHODS: A porcine model was developed to assess biventricular function during bolus pharmacologic administration before and after left-sided percutaneous ventricular assist and in cardiogenic shock. RESULTS: The presence of mechanical support increased right ventricular load and stress with respect to the left ventricle. This shifted and exaggerated the relative effects of commonly used vasoactive agents. Furthermore, induction of cardiogenic shock led to differential pulmonary vascular and right ventricular responses. CONCLUSIONS: Left ventricular ischemia and mechanical support altered interventricular coupling. Resulting impacts of pharmacologic agents indicate differential right heart responses and sensitivity to treatments and the need for further study to optimize biventricular function in shock patients.

2.
ASAIO J ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588597

ABSTRACT

Venoarterial extracorporeal membrane oxygenation (VA-ECMO) shunts venous blood to the systemic arterial circulation to provide end-organ perfusion while increasing afterload that may impede left ventricle (LV) ejection and impair cardiac recovery. To maintain flow across the aortic valve and reduce risk of lethal clot formation, secondary mechanical circulatory support (MCS) devices are increasingly used despite limited understanding of their effects on cardiac function. This study sought to quantify the effects of VA-ECMO and combined with either intraaortic balloon pump (IABP) or percutaneous ventricular assist device (pVAD) on LV physiologic state and perfusion metrics in a porcine model of acute cardiogenic shock. Shock was induced through serial left anterior descending artery microbead embolization followed by initiation of VA-ECMO support and then placement of either IABP or pVAD. Hemodynamic measurements, LV pressure-volume loops, and carotid artery blood flow were evaluated before and after institution of combined MCS. The IABP decreased LV end-diastolic pressure by a peak of 15% while slightly increasing LV stroke work compared with decreases of more than 60% and 50% with the pVAD, respectively. The pVAD also demonstrated increased coronary perfusion and systemic pressure gradients in comparison to the IABP. Combined support with VA-ECMO and pVAD improves cardiovascular state in comparison to IABP.

3.
Sci Transl Med ; 16(734): eadk4266, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354226

ABSTRACT

Ventricular assist devices (VADs) offer mechanical support for patients with cardiogenic shock by unloading the impaired ventricle and increasing cardiac outflow and subsequent tissue perfusion. Their ability to adjust ventricular assistance allows for rapid and safe dynamic changes in cardiac load, which can be used with direct measures of chamber pressures to quantify cardiac pathophysiologic state, predict response to interventions, and unmask vulnerabilities such as limitations of left-sided support efficacy due to intolerance of the right heart. We defined hemodynamic metrics in five pigs with dynamic peripheral transvalvular VAD (pVAD) support to the left ventricle. Metrics were obtained across a spectrum of disease states, including left ventricular ischemia induced by titrated microembolization of a coronary artery and right ventricular strain induced by titrated microembolization of the pulmonary arteries. A sweep of different pVAD speeds confirmed mechanisms of right heart decompensation after left-sided support and revealed intolerance. In contrast to the systemic circulation, pulmonary vascular compliance dominated in the right heart and defined the ability of the right heart to adapt to left-sided pVAD unloading. We developed a clinically accessible metric to measure pulmonary vascular compliance at different pVAD speeds that could predict right heart efficiency and tolerance to left-sided pVAD support. Findings in swine were validated with retrospective hemodynamic data from eight patients on pVAD support. This methodology and metric could be used to track right heart tolerance, predict decompensation before right heart failure, and guide titration of device speed and the need for biventricular support.


Subject(s)
Heart Diseases , Heart Failure , Humans , Animals , Swine , Shock, Cardiogenic , Heart Ventricles , Retrospective Studies , Heart Failure/complications , Hemodynamics
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1280-1283, 2021 11.
Article in English | MEDLINE | ID: mdl-34891519

ABSTRACT

'We present the development of a soft robotic-inspired device for lower limb compression therapy with application in the treatment of lymphedema. This device integrates the control capabilities of pneumatic devices with the wearability and low cost of compression garments. The design consists of a three-layered soft robotic sleeve that ensures safe skin contact, controls compression, and secures the device to the patient limb. The expandable component is made of interconnected pockets of various heights, which passively create a graduated compression profile along the lower limb. The system is inflated by a pump and a microcontroller-actuated valve, with force sensors embedded in the sleeve that monitor the pressure applied to the limb. Testing on healthy individualsq demonstrated the ability to reach clinically relevant target pressures (30, 40, 50 mmHg) and establish a distal-to-proximal descending pressure gradient of approximately 40 mmHg. Device function was shown to be robust against variations in subject anatomy.Clinical Relevance- This system provides controllable, graduated, compression therapy to lymphedema patients in an economical, portable, and customizable package.


Subject(s)
Lymphedema , Robotics , Humans , Intermittent Pneumatic Compression Devices , Lower Extremity , Lymphedema/therapy , Pressure
5.
Tissue Eng Part A ; 26(5-6): 253-264, 2020 03.
Article in English | MEDLINE | ID: mdl-31746678

ABSTRACT

Tissue decellularization for generating extracellular matrices has become a staple of regenerative medicine in the recent decades, extending from the research setting to clinical usage. Although methods and protocols for tissue decellularization are abundant throughout the literature, they can be time intensive and typically require specific overhead in terms of equipment. To reduce these barriers to entry, a functional and reproducible prototype of a tissue infusion/perfusion device (TIPD) has been designed and fabricated using three-dimensional printed parts in conjunction with commercially available components. This TIPD forms a system composed of two peristaltic pumps, two 3-way valves, and a chamber in which tissue is contained, and is controlled by user-customizable software. To increase repeatability among decellularization protocols, an automation function has been integrated into the software, which is able to specify fluid flow rates and define specific valve locations enabling selection of solutions to be introduced into a scaffold over the course of a decellularization process. The prototype has been tested for proof of concept through infusion and perfusion decellularization of skeletal muscle and intact kidneys, respectively, and has shown successful removal of cellular content while maintaining an intact ultrastructure. In an effort to increase the reproducibility of experimental designs and to promote an open source hardware initiative in the field of tissue engineering, a novel device was conceptualized and prototyped with printable part files made available for its fabrication in tandem with instructions for assembly. Impact Statement Repeatable methods for decellularization are essential for achieving consistent substrates between batches, laboratories, and facilities. To meet this end, an automatable tissue infusion/perfusion device composed of three-dimensional printed parts and commercially available components has been prototyped and tested. Materials and instructions for its assembly have been made available in an effort to reduce variability among equipment as well as to provide a platform on which to iterate open-source hardware in tissue engineering.


Subject(s)
Printing, Three-Dimensional , Animals , Kidney/cytology , Male , Muscle, Skeletal/cytology , Regenerative Medicine/methods , Software , Swine , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...