Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
BMC Neurol ; 24(1): 233, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965499

ABSTRACT

BACKGROUND: Body weight unloaded treadmill training has shown limited efficacy in further improving functional capacity after subacute rehabilitation of ischemic stroke patients. Dynamic robot assisted bodyweight unloading is a novel technology that may provide superior training stimuli and continued functional improvements in individuals with residual impairments in the chronic phase after the ischemic insult. The aim of the present study is to investigate the effect of dynamic robot-assisted versus standard training, initiated 6 months post-stroke, on motor function, physical function, fatigue, and quality of life in stroke-affected individuals still suffering from moderate-to-severe disabilities after subacute rehabilitation. METHODS: Stroke-affected individuals with moderate to severe disabilities will be recruited into a prospective cohort with measurements at 3-, 6-, 12- and 18-months post-stroke. A randomised controlled trial (RCT) will be nested in the prospective cohort with measurements pre-intervention (Pre), post-intervention (Post) and at follow-up 6 months following post-intervention testing. The present RCT will be conducted as a multicentre parallel-group superiority of intervention study with assessor-blinding and a stratified block randomisation design. Following pre-intervention testing, participants in the RCT study will be randomised into robot-assisted training (intervention) or standard training (active control). Participants in both groups will train 1:1 with a physiotherapist two times a week for 6 months (groups are matched for time allocated to training). The primary outcome is the between-group difference in change score of Fugl-Meyer Lower Extremity Assessment from pre-post intervention on the intention-to-treat population. A per-protocol analysis will be conducted analysing the differences in change scores of the participants demonstrating acceptable adherence. A priori sample size calculation allowing the detection of the minimally clinically important between-group difference of 6 points in the primary outcome (standard deviation 6 point, α = 5% and ß = 80%) resulted in 34 study participants. Allowing for dropout the study will include 40 participants in total. DISCUSSION: For stroke-affected individuals still suffering from moderate to severe disabilities following subacute standard rehabilitation, training interventions based on dynamic robot-assisted body weight unloading may facilitate an appropriate intensity, volume and task-specificity in training leading to superior functional recovery compared to training without the use of body weight unloading. TRIAL REGISTRATION: ClinicalTrials.gov. NCT06273475. TRIAL STATUS: Recruiting. Trial identifier: NCT06273475. Registry name: ClinicalTrials.gov. Date of registration on ClinicalTrials.gov: 22/02/2024.


Subject(s)
Ischemic Stroke , Robotics , Stroke Rehabilitation , Humans , Robotics/methods , Robotics/instrumentation , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Ischemic Stroke/rehabilitation , Ischemic Stroke/physiopathology , Prospective Studies , Exercise Therapy/methods , Exercise Therapy/instrumentation , Recovery of Function/physiology , Male , Female , Middle Aged , Treatment Outcome , Cohort Studies , Adult , Motor Activity/physiology
2.
J Pers Med ; 14(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38793033

ABSTRACT

Polymyalgia rheumatica (PMR) is an inflammatory disorder of unknown etiology, sharing symptoms with giant cell arthritis (GCA) and rheumatoid arthritis (RA). The pathogenic inflammatory roots are still not well understood, and there is a lack of extensive biomarker studies to explain the disease debut and post-acute phase. This study aimed to deeply analyze the serum proteome and inflammatory response of PMR patients before and after glucocorticoid treatment. We included treatment-naïve PMR patients, collecting samples before and after 3 months of treatment. For comparison, disease-modifying antirheumatic drug (DMARD)-naïve RA patients were included and matched to healthy controls (CTL). The serum proteome was examined using label-free quantitative mass spectrometry, while inflammation levels were assessed using multiplex inflammatory cytokine and cell-free DNA assays. The serum proteomes of the four groups comprised acute phase reactants, coagulation factors, complement proteins, immunoglobulins, and apolipoproteins. Serum amyloid A (SAA1) was significantly reduced by active PMR treatment. Cell-free DNA levels in PMR and RA groups were significantly higher than in healthy controls due to acute inflammation. Complement factors had minimal changes post-treatment. The individual serum proteome in PMR patients showed over 100 abundantly variable proteins, emphasizing the systemic impact of PMR disease debut and the effect of treatment. Interleukin (IL)-6 and interferon-gamma (IFN-γ) were significantly impacted by glucocorticoid treatment. Our study defines the PMR serum proteome during glucocorticoid treatment and highlights the role of SAA1, IL-6, and IFN-γ in treatment responses. An involvement of PGLYRP2 in acute PMR could indicate a response to bacterial infection, highlighting its role in the acute phase of the immune response. The results suggest that PMR may be an aberrant response to a bacterial infection with an exacerbated IL-6 and acute phase inflammatory response and molecular attempts to limit the inflammation.

3.
Clin Transl Med ; 14(5): e1719, 2024 May.
Article in English | MEDLINE | ID: mdl-38778460

ABSTRACT

Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation of the molecular mechanisms underlying the pathology of CVDs is critical for the development of efficacious preventative and therapeutic approaches. Accumulating studies have highlighted the significance of ubiquitin-modifying enzymes (UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orchestrate ubiquitination, a post-translational modification tightly involved in CVDs. Functionally, UMEs regulate multiple pathological processes in ischemic and hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the important roles of UMEs in CVDs, they may become novel druggable targets for these diseases. Besides, techniques applying UMEs, such as proteolysis-targeting chimera and deubiquitinase-targeting chimera, may also revolutionize the therapy of CVDs in the future.


Subject(s)
Cerebrovascular Disorders , Humans , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/metabolism , Ubiquitin/metabolism , Ubiquitination
4.
Br J Surg ; 111(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38445434

ABSTRACT

BACKGROUND: Evidence for the routine use of robotic technology and its impact on short-term outcomes in colon cancer surgery is lacking. The aim of this study was to compare the surgically induced systemic stress response and clinical and patient-reported outcomes for patients undergoing robot-assisted or laparoscopic colon cancer surgery. METHODS: In this double-blinded superiority RCT completed between August 2021 and March 2023, patients with stage 1-3 colon cancer were randomized in a 1 : 1 ratio to undergo either robot-assisted or laparoscopic colon cancer surgery. The primary outcome was changes in the systemic stress response, characterized by C-reactive protein expression in the first three postoperative days. Secondary outcomes were intraoperative and postoperative complications and patient-reported outcomes. The latter included quality of recovery-15 and pain intensity using a visual analogue scale. RESULTS: In total, 128 patients were screened for potential inclusion in this study; 50 patients (25 in the robot-assisted group and 25 in the laparoscopic group) were included in the final follow-up and analysis. The postoperative C-reactive protein response was higher on the first postoperative day in the laparoscopic group (mean difference = 19.88 mg/l, 95% c.i. 3.89-35.86; P = 0.045). No statistically significant differences were noted for C-reactive protein expression on the second and third postoperative days. CONCLUSION: Adopting robot-assisted surgery for stage 1-3 colon cancer is associated with a reduction in the surgical stress response. REGISTRATION NUMBER: NCT04687384 (http://www.clinicaltrials.gov).


Subject(s)
Colonic Neoplasms , Laparoscopy , Robotics , Humans , C-Reactive Protein , Colonic Neoplasms/surgery , Pain Measurement
5.
Mol Cell Neurosci ; 129: 103931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508542

ABSTRACT

Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1ß, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.


Subject(s)
Brain , Inflammation , Lipopolysaccharides , alpha-Synuclein , alpha-Synuclein/metabolism , Animals , Mice , Inflammation/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Male , Humans , Blood Coagulation/drug effects , Synucleinopathies/metabolism , Synucleinopathies/pathology , Cytokines/metabolism , Disease Models, Animal
6.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338871

ABSTRACT

Peripheral cytokine levels may serve as biomarkers for treatment response and disease monitoring in patients with multiple sclerosis (pwMS). The objectives were to assess changes in plasma biomarkers in PwMS after 14 days of fampridine treatment and to explore correlations between changes in performance measures and plasma biomarkers. We included 27 PwMS, 14 women and 13 men, aged 52.0 ± 11.6 years, with a disease duration of 17 ± 8.5 years, and an Expanded Disability Status Scale of 6 [IQR 5.0/6.5]. Gait and hand function were assessed using performance tests completed prior to fampridine and after 14 days of treatment. Venous blood was obtained, and chemiluminescence analysis conducted to assess plasma cytokines and neurodegenerative markers. All performance measures demonstrated improvements. Biomarkers showed decreased tumor necrosis factor (TNF) receptor-2 levels. Associations were found between change scores in (i) Six Spot Step Test and Interleukin (IL)-2, IL-8, and IL-17 levels; (ii) timed 25-foot walk and interferon-γ, IL-2, IL-8, TNF-α, and neurofilament light levels, and (iii) 12-Item Multiple Sclerosis Walking Scale and IL-17 levels. The associations may reflect increased MS-related inflammatory activity rather than a fampridine-induced response or that a higher level of inflammation induces a better response to fampridine.


Subject(s)
Multiple Sclerosis , Male , Humans , Female , Multiple Sclerosis/drug therapy , Interleukin-17 , Potassium Channel Blockers/therapeutic use , Interleukin-8 , Treatment Outcome , 4-Aminopyridine/therapeutic use
7.
Front Cell Neurosci ; 17: 1295840, 2023.
Article in English | MEDLINE | ID: mdl-38155863

ABSTRACT

In central nervous system (CNS) injury and disease, peripherally derived myeloid cells infiltrate the CNS parenchyma and interact with resident cells, propagating the neuroinflammatory response. Because peripheral myeloid populations differ profoundly depending on the type and phase of injury, their crosstalk with CNS resident cells, particularly microglia, will lead to different functional outcomes. Thus, understanding how peripheral myeloid cells affect the phenotype and function of microglia in different disease conditions and phases may lead to a better understanding of disease-specific targetable pathways for neuroprotection and neurorepair. To this end, we set out to develop an in vitro system to investigate the communication between peripheral myeloid cells and microglia, with the goal of uncovering potential differences due to disease type and timing. We isolated peripheral myeloid cells from mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, or acute cerebral ischemia by permanent middle cerebral artery occlusion (pMCAO) at different times after disease and probed their ability to change the phenotype of primary microglia isolated from the brain of adult mice. We identified changes not only dependent on the disease model, but also on the timepoint after disease onset from which the myeloid cells were isolated. Peripheral myeloid cells from acute EAE induced morphological changes in microglia, followed by increases in expression of genes involved in inflammatory signaling. Conversely, it was the peripheral myeloid cells from the chronic phase of pMCAO that induced gene expression changes in genes involved in inflammatory signaling and phagocytosis, which was not followed by a change in morphology. This underscores the importance of understanding the role of infiltrating myeloid cells in different disease contexts and phases. Furthermore, we showed that our assay is a valuable tool for investigating myeloid cell interactions in a range of CNS neuroinflammatory conditions.

8.
J Neuroimmunol ; 385: 578246, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37988839

ABSTRACT

Ischemic stroke often leaves survivors with permanent disabilities and therapies aimed at limiting detrimental inflammation and improving functional outcome are still needed. Tumor necrosis factor (TNF) levels increase rapidly after ischemic stroke, and while signaling through TNF receptor 1 (TNFR1) is primarily detrimental, TNFR2 signaling mainly has protective functions. We therefore investigated how systemic stimulation of TNFR2 with the TNFR2 agonist NewSTAR2 affects ischemic stroke in mice. We found that NewSTAR2 treatment induced changes in peripheral immune cell numbers and transiently affected microglial numbers and neuroinflammation. However, this was not sufficient to improve long-term functional outcome after stroke in mice.


Subject(s)
Ischemic Stroke , Receptors, Tumor Necrosis Factor, Type II , Animals , Mice , Inflammation/pathology , Mice, Inbred C57BL , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha/metabolism
9.
Ann Transl Med ; 11(10): 343, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37675294

ABSTRACT

Background: Chronic pain is a major health problem worldwide but the limited knowledge of its underlying pathophysiology impairs the opportunities for diagnostics and treatment. Biomarkers of chronic pain are greatly needed to understand the disease and develop new targets for interventions and drug treatments, and potentially introduce more precise diagnostic procedures. Much evidence points to a neuroimmune pathology for many chronic pain conditions and that important neuroimmune biomarkers exist in the cerebrospinal fluid (CSF) of patients with chronic pain. Systematic collection of CSF in large cohorts of chronic pain patients and healthy volunteers has proven difficult, however. We established the Danish Pain Research Biobank (DANPAIN-Biobank) with the aim of studying potential neuroimmune and glia-related biomarkers of chronic pain. In this paper, we describe the methods and the study population of the DANPAIN-Biobank. Methods: In this cross-sectional study, we included (I) participants with high-impact (HI) chronic pain from a tertiary, interdisciplinary pain center; (II) participants with osteoarthritic pain scheduled for arthroplasty surgery of the hip or knee at a regional hospital; and (III) pain-free volunteers. All participants completed a questionnaire assessing pain, functional impairment, anxiety, depression, and insomnia before samples of blood and CSF were extracted. Quantitative sensory tests were performed on participants with HI chronic pain and pain-free volunteers, and postoperative outcome scores were available on participants with osteoarthritic pain. Results: Of the 352 participants included, 201 had HI chronic pain (of which 71% had chronic widespread pain), 81 had chronic osteoarthritic pain, and 70 were pain-free volunteers. Samples were handled uniformly, and CSF samples were frozen within 30 minutes. Conclusions: We describe the content of the DANPAIN-Biobank, which is unique in terms of the number of participants (including pain-free volunteers), extensive clinical data, and uniformity in sample handling. We believe it presents a promising new platform for the study of neuroimmune and glia-related biomarkers of chronic pain.

10.
Adv Sci (Weinh) ; 10(28): e2301641, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37587766

ABSTRACT

Cerebral ischemic stroke is a leading cause of morbidity and mortality globally. However, the mechanisms underlying ischemic stroke injury remain poorly understood. Here, it is found that deficiency of the ubiquitin-specific protease USP25 significantly aggravate ischemic stroke injury in mice. USP25 has no impact on neuronal death under hypoxic conditions, but reduced ischemic stroke-induced neuronal loss and neurological deficits by inhibiting microglia-mediated neuroinflammation. Mechanistically, USP25 restricts the activation of NF-κB and MAPK signaling by regulating TAB2. As a deubiquitinating enzyme, USP25 removeds K63-specific polyubiquitin chains from TAB2. AAV9-mediated TAB2 knockdown ameliorates ischemic stroke injury and abolishes the effect of USP25 deletion. In both mouse and human brains, USP25 is markedly upregulated in microglia in the ischemic penumbra, implying a clinical relevance of USP25 in ischemic stroke. Collectively, USP25 is identified as a critical inhibitor of ischemic stroke injury and this data suggest USP25 may serve as a therapeutic target for ischemic stroke.

12.
Cell Rep ; 42(6): 112629, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37289590

ABSTRACT

Triggering receptor expressed on myeloid cell 2 (TREM2) signaling often drives opposing effects in traumatic versus demyelinating CNS disorders. Here, we identify two distinct phenotypes of microglia and infiltrating myeloid populations dependent on TREM2 expression levels at the acute stage and elucidate how they mediate the opposing effects of TREM2 in spinal cord injury (SCI) versus multiple sclerosis animal models (experimental autoimmune encephalomyelitis [EAE]). High TREM2 levels sustain phagocytic microglia and infiltrating macrophages after SCI. In contrast, moderate TREM2 levels sustain immunomodulatory microglia and infiltrating monocytes in EAE. TREM2-ablated microglia (purine-sensing phenotype in SCI and reduced immunomodulatory phenotype in EAE) drive transient protection at the acute stage of both disorders, whereas reduced phagocytic macrophages and lysosome-activated monocytes lead to contrasting neuroprotective and demyelinating effects in SCI versus EAE, respectively. Our study provides comprehensive insights into the complex roles of TREM2 in myeloid populations across diverse CNS disorders, which has crucial implications in devising TREM2-targeting therapeutics.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Spinal Cord Injuries , Animals , Mice , Macrophages/metabolism , Microglia/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Monocytes/metabolism , Spinal Cord Injuries/pathology , Phenotype , Mice, Inbred C57BL
13.
Biology (Basel) ; 12(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37372129

ABSTRACT

Clinical and animal model studies have implicated inflammation and glial and peripheral immune cell responses in the pathophysiology of spinal cord injury (SCI). A key player in the inflammatory response after SCI is the pleiotropic cytokine tumor necrosis factor (TNF), which exists both in both a transmembrane (tmTNF) and a soluble (solTNF) form. In the present study, we extend our previous findings of a therapeutic effect of topically blocking solTNF signaling after SCI for three consecutive days on lesion size and functional outcome to study the effect on spatio-temporal changes in the inflammatory response after SCI in mice treated with the selective solTNF inhibitor XPro1595 and compared to saline-treated mice. We found that despite comparable TNF and TNF receptor levels between XPro1595- and saline-treated mice, XPro1595 transiently decreased pro-inflammatory interleukin (IL)-1ß and IL-6 levels and increased pro-regenerative IL-10 levels in the acute phase after SCI. This was complemented by a decrease in the number of infiltrated leukocytes (macrophages and neutrophils) in the lesioned area of the spinal cord and an increase in the number of microglia in the peri-lesion area 14 days after SCI, followed by a decrease in microglial activation in the peri-lesion area 21 days after SCI. This translated into increased myelin preservation and improved functional outcomes in XPro1595-treated mice 35 days after SCI. Collectively, our data suggest that selective targeting of solTNF time-dependently modulates the neuroinflammatory response by favoring a pro-regenerative environment in the lesioned spinal cord, leading to improved functional outcomes.

14.
Mult Scler Relat Disord ; 70: 104478, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603294

ABSTRACT

BACKGROUND: Despite the wide range of existing performance measures to evaluate functional status of patients with multiple sclerosis, the heterogeneous nature of the disease hinders clinical characterization and monitoring of disease severity. Speckle tracking ultrasonography is a non-invasive technique to assess isolated muscle function by evaluating the contractile properties of muscle tissue, i.e. muscle strain. The aim of this study was to investigate whether muscle strain measured by speckle tracking ultrasonography could be a useful quantitative measure of muscle function in patients with multiple sclerosis. The criterion validity of muscle strain was compared to that of validated performance measures of upper and lower extremity function. METHODS: This cross-sectional study used baseline data from an explorative observational cohort study (the MUST study). Participants recruited from a hospital outpatient MS clinic underwent speckle tracking ultrasonography of the biceps brachii, supraspinatus, and soleus muscles of the dominant side according to pre-defined submaximal isometric contractions. Participants also completed the Timed 25-Foot Walk Test, the Six Spot Step Test, the 2-minute walking test, the Nine-Hole Peg Test, the 12-item Multiple Sclerosis Walking Scale, and the Oxford Shoulder Score. Gaussian distribution was investigated by visual inspection of normal probability plots and the Shapiro-Wilk test. The Timed 25-Foot Walk Test and Nine-Hole Peg Test were selected as gold standards for function of the lower and upper extremities, respectively. Criterion validity was assessed using Spearman's rank-order correlation coefficient ρ (rho), comparing the muscle strain and performance measures against predefined gold standards. Differences in criterion validity were estimated using squared correlations on the Fischer's Z-scale, with non-parametric bootstrapping to obtain bias-corrected, accelerated bootstrap confidence intervals (95% BCa). RESULTS: Criterion validity showed good to excellent correlations between the gold standard for lower extremity function and the 2-minute walking test and Six Spot Step Test, and a fair correlation to the 12-item Multiple Sclerosis Walking Scale. No significant correlation was found between the gold standard for upper extremity function and the performance measure. There were no significant correlations between the gold standards and muscle strain. CONCLUSION: The absence of criterion validity for muscle strain alongside fair to strong criterion validity for the performance measures indicates that speckle tracking ultrasonography assessment of muscle strain is either invalid or evaluates other constructs of multiple sclerosis. Muscle strain assessed by speckle tracking ultrasonography cannot be recommended for the evaluation of treatment effects or disease progression in multiple sclerosis.


Subject(s)
Multiple Sclerosis , Humans , Walking/physiology , Cross-Sectional Studies , Muscle, Skeletal , Foot , Reproducibility of Results
15.
Cell Mol Neurobiol ; 43(3): 925-950, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35604578

ABSTRACT

Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.


Subject(s)
Spinal Cord Injuries , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Spinal Cord Injuries/metabolism , Neurons/metabolism , Microglia/metabolism , Macrophages/pathology , Spinal Cord/metabolism
16.
Clin Biomech (Bristol, Avon) ; 100: 105826, 2022 12.
Article in English | MEDLINE | ID: mdl-36436320

ABSTRACT

BACKGROUND: Fampridine has shown to improve walking speed, motor control, and balance in patients with multiple sclerosis. However, potential fampridine-induced changes in gait quality and underlying mechanisms, evaluated by three-dimensional gait analysis, are poorly examined. The aim was to examine if two weeks of fampridine treatment would improve gait quality (using Gait Profile Score and Gait Variable Scores from three-dimensional gait analysis) and gait function (using performance-based tests, spatiotemporal parameters, and self-perceived gait function). METHODS: 14 participants with multiple sclerosis were included (9 women and 5 men, age 53.6 ± 12.8 years, disease duration 21 ± 9.1 years) in this cohort study. Tests were completed prior to fampridine and after 14 (± 1) days of treatment. Three-dimensional gait analyses were completed, and kinematic measures were calculated for overall gait quality using Gait Profile Score, and for joint-specific variables, Gait Variable Scores. Gait function was assessed using spatiotemporal parameters, performance-based tests, and a patient-reported outcome measure. Student's paired t-test/Wilcoxon signed rank test were used to compare baseline and follow-up variables. Sample size calculation for Gait Profile Score required at least 9 participants. FINDINGS: No fampridine-induced improvements in gait quality were demonstrated. For gait function, improvements were found in performance-based tests (Timed 25-Foot Walk: -11.5%; Six Spot Step Test: -13.9%; 2-Minute Walk Test: 18.2%) and self-perceived gait function (12-itemMS Walking Scale: -35.2%). INTERPRETATION: Although two weeks of fampridine treatment in patients with multiple sclerosis improved gait function, there was no change in overall kinematic quality of gait. TRIAL REGISTRATION: This work was collected as a part of a registered clinical trial (MUST): ClinicalTrials.govNCT03847545.


Subject(s)
Multiple Sclerosis , Humans , Female , Adult , Middle Aged , Aged , Multiple Sclerosis/drug therapy , Cohort Studies , Prospective Studies , Walking , Gait
17.
Front Cardiovasc Med ; 9: 942342, 2022.
Article in English | MEDLINE | ID: mdl-36186984

ABSTRACT

Background: Tumor necrosis factor (TNF) is pathologically elevated in human abdominal aortic aneurysms (AAA). Non-selective TNF inhibition-based therapeutics are approved for human use but have been linked to several side effects. Compounds that target the proinflammatory soluble form of TNF (solTNF) but preserve the immunomodulatory capabilities of the transmembrane form of TNF (tmTNF) may prevent these side effects. We hypothesize that inhibition of solTNF signaling prevents AAA expansion. Methods: The effect of the selective solTNF inhibitor, XPro1595, and the non-selective TNF inhibitor, Etanercept (ETN) was examined in porcine pancreatic elastase (PPE) induced AAA mice, and findings with XPro1595 was confirmed in angiotensin II (ANGII) induced AAA in hyperlipidemic apolipoprotein E (Apoe) -/- mice. Results: XPro1595 treatment significantly reduced AAA expansion in both models, and a similar trend (p = 0.06) was observed in PPE-induced AAA in ETN-treated mice. In the PPE aneurysm wall, XPro1595 improved elastin integrity scores. In aneurysms, mean TNFR1 levels reduced non-significantly (p = 0.07) by 50% after TNF inhibition, but the histological location in murine AAAs was unaffected and similar to that in human AAAs. Semi-quantification of infiltrating leucocytes, macrophages, T-cells, and neutrophils in the aneurysm wall were unaffected by TNF inhibition. XPro1595 increased systemic TNF levels, while ETN increased systemic IL-10 levels. In ANGII-induced AAA mice, XPro1595 increased systemic TNF and IL-5 levels. In early AAA development, proteomic analyses revealed that XPro1595 significantly upregulated ontology terms including "platelet aggregation" and "coagulation" related to the fibrinogen complex, from which several proteins were among the top regulated proteins. Downregulated ontology terms were associated with metabolic processes. Conclusion: In conclusion, selective inhibition of solTNF signaling reduced aneurysm expansion in mice, supporting its potential as an attractive treatment option for AAA patients.

18.
J Cereb Blood Flow Metab ; 42(12): 2303-2317, 2022 12.
Article in English | MEDLINE | ID: mdl-35999817

ABSTRACT

Systemic inflammation affects cognitive functions and increases the risk of dementia. This phenomenon is thought to be mediated in part by cytokines that promote neuronal survival, but the continuous exposure to which may lead to neurodegeneration. The effects of systemic inflammation on cerebral blood vessels, and their provision of adequate oxygen to support critical brain parenchymal cell functions, remains unclear. Here, we demonstrate that neurovascular coupling is profoundly disturbed in lipopolysaccharide (LPS) induced systemic inflammation in awake mice. In the 24 hours following LPS injection, the hyperaemic response of pial vessels to functional activation was attenuated and delayed. Concurrently, under steady-state conditions, the capillary network displayed a significant increase in the number of capillaries with blocked blood flow, as well as increased duration of 'capillary stalls'-a phenomenon previously reported in animal models of stroke and Alzheimer's disease pathology. We speculate that vascular changes and impaired oxygen availability may affect brain functions following acute systemic inflammation and contribute to the long-term risk of neurodegenerative changes associated with chronic, systemic inflammation.


Subject(s)
Hyperemia , Lipopolysaccharides , Animals , Mice , Microcirculation , Disease Models, Animal , Inflammation/pathology , Capillaries , Oxygen
19.
Pediatr Allergy Immunol ; 33(7): e13823, 2022 07.
Article in English | MEDLINE | ID: mdl-35871461

ABSTRACT

BACKGROUND: Diverse pathways stemming from a history of atopic dermatitis (AD) might modulate different biomarkers associated with the development of asthma. Biomarkers associated with AD and asthma separately have been investigated, but none have characterized a combined AD+asthma phenotype. We investigated the clinical and molecular characteristics associated with an AD+asthma phenotype compared with AD, asthma and controls. METHODS: From a prospective birth cohort and the outpatient allergy clinic, we included four groups of 6-12-year-old children: (1) healthy controls (2) previous, current, or present AD without asthma, (3) previous, current, or present AD and current asthma and (4) current asthma without AD. We performed clinical examinations and interviews and measured serum IgE, natural moisturizing factors (NMF), and plasma cytokine levels. RESULTS: We found an increased number of IgE sensitizations in AD+asthma, prominent after stratifying for food allergens (p < .05). Pro-Th2 cytokines CCL18, TSLP, and Eotaxin-3 were elevated in AD+asthma, though not significantly higher than asthma, and elevated in asthma compared with controls. NMF levels were decreased in AD compared with asthma and control groups (p = .019, p < .001, respectively). NMF levels correlated negatively to sensitization (p = .026), though nonsignificant with only the patient groups. CONCLUSION: Our results indicate that Th2 cytokines and increased number of sensitizations are associated with AD + asthma phenotypes compared with AD alone and that skin barrier impairment as well as decreased airway epithelial integrity may play a role in sensitization and immune modulation. Our findings suggest candidate biomarkers that should be further explored for their functional roles and prognostic potential.


Subject(s)
Asthma , Dermatitis, Atopic , Food Hypersensitivity , Allergens , Asthma/complications , Asthma/diagnosis , Asthma/epidemiology , Biomarkers , Cytokines , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/epidemiology , Humans , Immunoglobulin E , Prospective Studies
20.
Mult Scler Relat Disord ; 66: 104034, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35843140

ABSTRACT

OBJECTIVE: The purpose of this interventional study on participants with multiple sclerosis (MS) with walking disability was to evaluate changes in functional hand and walking measurements after fampridine treatment, after stratifying by the Expanded Disability Status Scale (EDSS). We furthermore wanted to investigate different functional measurements to evaluate their ability to detect responders to fampridine with a clinically relevant improvement. METHODS: Patients were recruited from the MS Clinic at Odense University Hospital and were classified into two disability groups based on their EDSS score (moderate EDSS (EDSSMod) 4.5-5.5 [n = 19] and severe EDSS (EDSSSev) 6.0-7.0 [n = 14]). At baseline (visit 1) they completed the Timed 25-Foot Walk (T25FW), 2-Minute Walk Test (2MWT), Nine Hold Peg Test (9HPT), 12-item Multiple Sclerosis Walking Scale (MSWS-12), and the Six Spot Step Test (SSST). Participants were given 10 mg twice daily fampridine for 14 days before retested (visit 2). For each measurement, cut-off values were used to define responders with a clinically relevant improvement to treatment. The measurements were evaluated separately and in combination. RESULTS: Of the 33 participants, 25 (75.8%) were identified as having a clinically relevant improvement (CRI). For all patients combined (EDSSAll), all five measurements showed significant functional improvement after treatment. For the individual measurements, the highest participant response rates after 14 days of fampridine treatment were seen on the MSWS-12 (57.6%) and 2MWT (42.4%). The 2MWT also showed the largest performance improvement (18.5%) from visit 1 to visit 2. For patients with severe disability (EDSSSev), no significant improvement was seen after fampridine treatment on the T25FW, and most of the responders to T25FW had moderate disability (EDSSMod, 71.5%). Conversely for the SSST, most responders were EDSSSev (83.3%). No participants had a clinically relevant improvement on the 9HPT. The combination of T25FW, SSST, and MSWS-12 was less sensitive in distinguishing responders from non-responders, whereas the combination of 2MWT and MSWS-12 identified the same responders and could better distinguish fampridine responders from non-responders. CONCLUSION: EDSS level did not influence the effect of fampridine treatment on functional hand and walking measures and the responsiveness of the measurements differed only a little between moderate and severe EDSS levels. The combination of self-reported walking capacity (MSWS-12) and walking endurance (2MWT) was better than T25FW, SSST, and MSWS-12 at detecting clinically meaningful improvement after fampridine treatment, which could prove useful in the clinical monitoring of walking disabilities in MS during fampridine treatment.


Subject(s)
Multiple Sclerosis , 4-Aminopyridine/therapeutic use , Disability Evaluation , Follow-Up Studies , Humans , Mobility Limitation , Multiple Sclerosis/complications , Multiple Sclerosis/diagnosis , Multiple Sclerosis/drug therapy , Outcome Assessment, Health Care , Treatment Outcome , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...