Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1135(2): 230-40, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17064715

ABSTRACT

Fast GC separations of a broad range of analytes are demonstrated using a capillary column coated with a novel immobilized ionic liquid (IIL) stationary phase. Both completely cross-linked and partially cross-linked columns were evaluated, yielding approximately 1600 and approximately 2000 theoretical plates per meter, respectively. Enhanced separation is demonstrated using a dual-column ensemble comprised of an IIL column, a commercially coated Rtx-1 column, and a pneumatic valve connecting the inlet to the junction point between the two columns. Enhanced separation of 20 components, with two sets of co-eluting peaks is shown in approximately 150 s, while sacrificing only a length of time equivalent to the sum of the stop flow pulses, or about 15.5 s. A novel application of a band trajectory model that shows band position as a function of analysis time as analytes move through the column ensemble is employed to determine pulse application times. The model predicts component retention times within a few seconds. Another method of selectivity enhancement of the IIL stationary phase-coated columns is demonstrated using a differential mobility spectrometer (DMS) that provides a second dimension separation based on ion mobility in a high-frequency electrical field. The DMS is able to separate all but one set of co-eluting components from the IIL column. The separation of 13 components found in the headspace above U.S. currency is demonstrated using the IIL column in a dual-column ensemble as well as with the DMS.


Subject(s)
Chromatography, Gas/methods , Spectrum Analysis/methods , Models, Theoretical
2.
Anal Chem ; 78(19): 6765-73, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-17007495

ABSTRACT

A microcountercurrent flame photometric detector (microcc-FPD) was adapted and optimized for ultrafast gas chromatographic (GC) separation and detection of organophosphor (OP) and organosulfur (OS) compounds on short chromatographic columns. Air and hydrogen are introduced to the microcc-FPD from opposite directions, creating a hydrogen-rich flame. In this microcc-FPD, combustion takes place between the burner tips without touching them. The separation between the tips and the flame reduces heat loss from the flame to the surrounding environment, resulting in low hydrogen consumption and a compact flame. The microcc-FPD is capable of detecting very narrow (13 ms) chromatographic peaks. An ultrafast GC separation of a group of six OP and OS compounds is achieved within less than 5 s using fast temperature programming of a 0.5-m-long microbore column. Very fast separations are also demonstrated on a 1-m-long microfabricated column consisting of 150-microm-wide, 240-microm-deep channels, etched in a 1.9-cm square silicon chip, covered with a Pyrex wafer, and statically coated with dimethyl polysiloxane. With a hydrogen flow rate of 10 mL/min, the detection limit for OP is 12 pg of P/s and 3 ng of S/s for OS compounds at a signal-to-noise ratio of 2. The coupling of a microfabricated column and a miniature FPD is an important step toward the development of a miniaturized GC-FPD capable of ultrafast detection of low levels of OP and OS compounds.

3.
Anal Chem ; 77(23): 7563-71, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16316163

ABSTRACT

A 3.0-m-long, 150-microm-wide, 240-microm-deep channel etched in a 3.2-cm-square silicon chip, covered with a Pyrex wafer, and coated with a dimethyl polysiloxane stationary phase is used for the GC separation of volatile organic compounds. The column, which generates approximately 5500 theoretical plates, is temperature-programmed in a conventional convection oven. The column is connected through a heated transfer line to a microfabricated differential mobility spectrometer. The spectrometer incorporates a 63Ni source for atmospheric-pressure chemical ionization of the analytes. Nitrogen or air transport gas (flow 300 cm(3)/min) drives the analyte ions through the cell. The spectrometer operates with an asymmetric radio frequency (RF) electric field between a pair of electrodes in the detector cell. During each radio frequency cycle, the ion mobility alternates between a high-field and a low-field value (differential mobility). Ions oscillate between the electrodes, and only ions with an appropriate differential mobility reach a pair of biased collectors at the downstream end of the cell. A compensation voltage applied to one of the RF electrodes is scanned to allow ions with different differential mobilities to pass through the cell without being annihilated at the RF electrodes. A unique feature of the device is that both positive and negative ions are detected from a single experiment. The combined microfabricated column and detector is evaluated for the analysis of volatile organic compounds with a variety of functionalities.


Subject(s)
Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Organic Chemicals/chemistry , Silicon/chemistry , Temperature , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...