Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(11)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37998187

ABSTRACT

By employing Tsallis' extensive but non-additive δ-entropy, we formulate the first two laws of thermodynamics for gravitating systems. By invoking Carathéodory's principle, we pay particular attention to the integrating factor for the heat one-form. We show that the latter factorizes into the product of thermal and entropic parts, where the entropic part cannot be reduced to a constant, as is the case in conventional thermodynamics, due to the non-additive nature of Sδ. The ensuing two laws of thermodynamics imply a Tsallis cosmology, which is then applied to a radiation-dominated universe to address the Big Bang nucleosynthesis and the relic abundance of cold dark matter particles. It is demonstrated that the Tsallis cosmology with the scaling exponent δ∼1.499 (or equivalently, the anomalous dimension Δ∼0.0013) consistently describes both the abundance of cold dark matter particles and the formation of primordial light elements, such as deuterium 2H and helium 4He. Salient issues, including the zeroth law of thermodynamics for the δ-entropy and the lithium 7Li problem, are also briefly discussed.

2.
Eur Phys J C Part Fields ; 82(8): 720, 2022.
Article in English | MEDLINE | ID: mdl-35996563

ABSTRACT

The Experiment to Detect the Global Epoch of Reionisation Signature (EDGES) collaboration has recently reported an important result related to the absorption signal in the Cosmic Microwave Background radiation spectrum. This signal corresponds to the red-shifted 21-cm line at z ≃ 17.2 , whose amplitude is about twice the expected value. This represents a deviation of approximately 3.8 σ from the predictions of the standard model of cosmology, i.e. the Λ CDM model. This opens a window for testing new physics beyond both the standard model of particle physics and the Λ CDM model. In this work, we explore the possibility of explaining the EDGES anomaly in terms of modified dispersion relations. The latter are typically induced in unified theories and theories of quantum gravity, such as String/M-theories and Loop Quantum Gravity. These modified dispersion relations affect the density of states per unit volume and thus the thermal spectrum of the Cosmic Microwave Background photons. The temperature of the 21-cm brightness temperature is modified accordingly giving a potential explanation of the EDGES anomaly.

3.
Eur Phys J C Part Fields ; 79(1): 41, 2019.
Article in English | MEDLINE | ID: mdl-30872968

ABSTRACT

In this paper, we study the Casimir effect in a curved spacetime described by gravitational actions quadratic in the curvature. In particular, we consider the dynamics of a massless scalar field confined between two nearby plates and compute the corresponding mean vacuum energy density and pressure in the framework of quadratic theories of gravity. Since we are interested in the weak-field limit, as far as the gravitational sector is concerned we work in the linear regime. Remarkably, corrections to the flat spacetime result due to extended models of gravity (although very small) may appear at the first-order of our perturbative analysis, whereas general relativity contributions start appearing at the second order. Future experiments on the Casimir effect might represent a useful tool to test and constrain extended theories of gravity.

SELECTION OF CITATIONS
SEARCH DETAIL
...