Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 180: 106336, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36403717

ABSTRACT

Integrins are cell surface receptors involved in multiple functions vital for cellular proliferation. Various tumor cells overexpress αß-integrins, making them ideal biomarkers for diagnostic imaging and tumor-targeted drug delivery. LXY30 is a peptide that can specifically recognize and interact with the integrin α3ß1, a molecule overexpressed in breast, ovarian and colorectal cancer. Hepatitis E virus nanoparticles (HEVNPs) are virus-like particles that have been investigated as drug delivery agents for the targeted delivery of nucleic acids and small proteins. HEVNPs can be a theranostic platform for monitoring and evaluating tumor-targeted therapies if tagged with a suitable diagnostic marker. Herein, we describe the radiolabeling and biological evaluation of integrin α3ß1-targeted HEVNPs. HEVNPs were conjugated with DOTA and radiolabeled with gallium-68 (t1/2 = 67.7 min), a short-lived positron emitter used in positron emission tomography (PET). The synthesized [68Ga]Ga-DOTA-HEVNPs were used to evaluate the efficacy of conjugated LXY30 peptide to improve HEVNPs binding and internalization to integrin α3ß1 expressing human colorectal HCT 116 cells. In vivo tumor accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 was evaluated in HCT 116 colorectal tumor-bearing mice. [68Ga]Ga-DOTA-HEVNP-LXY30 and non-targeted [68Ga]Ga-DOTA-HEVNP were radiolabeled with radiochemical yields (RCY) of 67.9 ± 3.3% and 73.7 ± 9.8%, respectively. [68Ga]Ga-DOTA-HEVNP-LXY30 exhibited significantly higher internalization in HCT 116 cells than the non-targeted [68Ga]Ga-DOTA-HEVNPs (21.0 ± 0.7% vs. 10.5 ± 0.3% at 3 h, ****P<0.0001). After intravenous administration to mice, accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 to HCT 116 xenograft tumors was at its highest rate of 0.8 ± 0.4%ID/g at 60 min. [68Ga]Ga-DOTA-HEVNP-LXY30 accumulated mainly in the liver and spleen (39.8 ± 13.0%%ID/g and 24.6 ± 24.1%ID/g, respectively). Despite the low targeting efficiency in vivo, we demonstrated that [68Ga]Ga-DOTA-HEVNP is a promising diagnostic platform for quantitative analysis of HEVNP distribution in vivo. This nanosystem can be utilized in future studies assessing the success of further engineered HEVNP structures with optimized targeting efficiency in vivo.


Subject(s)
Colorectal Neoplasms , Gallium Radioisotopes , Integrin alpha3beta1 , Radiopharmaceuticals , Animals , Humans , Mice , Colorectal Neoplasms/diagnostic imaging , Integrin alpha3beta1/metabolism , Peptides/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , HCT116 Cells
2.
Mol Pharm ; 19(8): 2971-2979, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35857429

ABSTRACT

Targeted delivery of diagnostics and therapeutics offers essential advantages over nontargeted systemic delivery. These include the reduction of toxicity, the ability to reach sites beyond biological barriers, and the delivery of higher cargo concentrations to diseased sites. Virus-like particles (VLPs) can efficiently be used for targeted delivery purposes. VLPs are derived from the coat proteins of viral capsids. They are self-assembled, biodegradable, and homogeneously distributed. In this study, hepatitis E virus (HEV) VLP derivatives, hepatitis E virus nanoparticles (HEVNPs), were radiolabeled with gallium-68, and consequently, the biodistribution of the labeled [68Ga]Ga-DOTA-HEVNPs was studied in mice. The results indicated that [68Ga]Ga-DOTA-HEVNPs can be considered as promising theranostic nanocarriers, especially for hepatocyte-targeting therapies.


Subject(s)
Hepatitis E virus , Nanoparticles , Animals , Gallium Radioisotopes , Mice , Positron-Emission Tomography/methods , Tissue Distribution
3.
Nucl Med Biol ; 114-115: 151-161, 2022.
Article in English | MEDLINE | ID: mdl-35680503

ABSTRACT

Pretargeted PET imaging allows the use of radiotracers labeled with short-living PET radionuclides for tracing drugs with slow pharmacokinetics. Recently, especially methods based on bioorthogonal chemistry have been under intensive investigation for pretargeted PET imaging. The pharmacokinetics of the radiotracer is one of the factors that determine the success of the pretargeted strategy. Here, we report synthesis and biological evaluation of two 68Ga-labeled tetrazine (Tz)-based radiotracers, [68Ga]Ga-HBED-CC-PEG4-Tz ([68Ga]4) and [68Ga]Ga-DOTA-PEG4-Tz ([68Ga]6), aiming for development of new tracer candidates for pretargeted PET imaging based on the inverse electron demand Diels-Alder (IEDDA) ligation between a tetrazine and a strained alkene, such as trans-cyclooctene (TCO). Excellent radiochemical yield (RCY) was obtained for [68Ga]4 (RCY > 96%) and slightly lower for [68Ga]6 (RCY > 88%). Radiolabeling of HBED-CC-Tz proved to be faster and more efficient under milder conditions compared to the DOTA analogue. The two tracers exhibited excellent radiolabel stability both in vitro and in vivo. Moreover, [68Ga]4 was successfully used for radiolabeling two different TCO-functionalized nanoparticles in vitro: Hepatitis E virus nanoparticles (HEVNPs) and porous silicon nanoparticles (PSiNPs).


Subject(s)
Gallium Radioisotopes , Heterocyclic Compounds , Tissue Distribution , Radiopharmaceuticals/pharmacokinetics , Radiochemistry , Positron-Emission Tomography/methods
4.
Pharmaceutics ; 11(12)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861119

ABSTRACT

Polyethylene glycol (PEG) has been successfully used for improving circulation time of several nanomaterials but prolonging the circulation of porous silicon nanoparticles (PSi NPs) has remained challenging. Here, we report a site specific radiolabeling of dual-PEGylated thermally oxidized porous silicon (DPEG-TOPSi) NPs and investigation of influence of the PEGylation on blood circulation time of TOPSi NPs. Trans-cyclooctene conjugated DPEG-TOPSi NPs were radiolabeled through a click reaction with [111In]In-DOTA-PEG4-tetrazine (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and the particle behavior was evaluated in vivo in Balb/c mice bearing 4T1 murine breast cancer allografts. The dual-PEGylation significantly prolonged circulation of [111In]In-DPEG-TOPSi particles when compared to non-PEGylated control particles, yielding 10.8 ± 1.7% of the injected activity/g in blood at 15 min for [111In]In-DPEG-TOPSi NPs. The improved circulation time will be beneficial for the accumulation of targeted DPEG-TOPSi to tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...