Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 125(22): 4867-4881, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34042451

ABSTRACT

The infrared spectra of EDTA complexed with Ca2+ and Mg2+ contain, to date, unidentified vibrational bands. This study assigns the peaks in the linear and two-dimensional infrared spectra of EDTA, with and without either Ca2+ or Mg2+ ions. Two-dimensional infrared spectroscopy and DFT calculations reveal that, in both the presence and absence of ions, the carboxylate symmetric stretch and the terminal CH bending vibrations mix. We introduce a method to calculate participation coefficients that quantify the contribution of the carboxylate symmetric stretch, CH wag, CH twist, and CH scissor in the 1400-1550 cm-1 region. With the help of participation coefficients, we assign the 1400-1430 cm-1 region to the carboxylate symmetric stretch, which can mix with CH modes. We assign the 1000-1380 cm-1 region to CH twist modes, the 1380-1430 cm-1 region to wag modes, and the 1420-1650 cm-1 region to scissor modes. The difference in binding geometry between the carboxylate-Ca2+ and carboxylate-Mg2+ complex manifests as new diagonal and cross-peaks between the mixed modes in the two complexes. The small Mg2+ ion binds EDTA tighter than the Ca2+ ion, which causes a redshift of the COO symmetric stretches of the sagittal carboxylates. Energy decomposition analysis further characterizes the importance of electrostatics and deformation energy in the bound complexes.

2.
Phys Chem Chem Phys ; 22(39): 22699-22710, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33016282

ABSTRACT

The adsorption of nitric oxide and nitrogen dioxide (NOx) to the Buckybowls sumanene and corannulene was investigated. Binding energies were up to 1.8× larger than for coronene as the planar analogue, demonstrating the advantages of Buckybowls for gas adsorption. In agreement with previous reports on carbon dioxide and methane adsorption, the favorable binding energies for NOx were shown to be associated with the curvature of the Buckybowls. It is shown that applying an electric field along the bowl symmetry axis modifies the bowl curvatures and impacts adsorbate binding energies, including the potential to desorb adsorbates. As a proof of concept, it is shown that applying electric fields of different strengths and orientations selectively controls sumanene's preference to bind nitric oxide, nitrogen dioxide, and carbon dioxide, suggesting potential applications for dynamically tunable gas adsorption. Moreover, it is demonstrated that adsorbates can be desorbed by applying suitable electric field strengths, allowing cleaning of the Buckybowls for renewed usage.

3.
J Am Chem Soc ; 139(46): 16548-16555, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29064694

ABSTRACT

The current understanding of ligand effects in transition metal catalysis is mostly based on the analysis of catalyst-substrate through-bond and through-space interactions, with the latter commonly considered to be repulsive in nature. The dispersion interaction between the ligand and the substrate, a ubiquitous type of attractive noncovalent interaction, is seldom accounted for in the context of transition-metal-catalyzed transformations. Herein we report a computational model to quantitatively analyze the effects of different types of catalyst-substrate interactions on reactivity. Using this model, we show that in the copper(I) hydride (CuH)-catalyzed hydroamination of unactivated olefins, the substantially enhanced reactivity of copper catalysts based on bulky bidentate phosphine ligands originates from the attractive ligand-substrate dispersion interaction. These computational findings are validated by kinetic studies across a range of hydroamination reactions using structurally diverse phosphine ligands, revealing the critical role of bulky P-aryl groups in facilitating this process.


Subject(s)
Alkenes/chemistry , Copper/chemistry , Amination , Catalysis , Kinetics , Ligands
5.
J Phys Chem B ; 121(1): 208-220, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28036175

ABSTRACT

This work elucidates the molecular binding mechanism of CO2 in [C4C1IM][PF6] ionic liquid (IL) and its interplay with the CO2 asymmetric stretch frequency ν3, and establishes computational protocols for the reliable construction of spectroscopic maps for simulating ultrafast 2D-IR data of CO2 solvated in ILs. While charge transfer drives the static frequency shift between different ionic liquids ( J. Chem. Phys. 2015 , 142 , 212425 ), we find here that electrostatic and Pauli repulsion effects dominate the dynamical frequency shift between different geometries sampled from the finite-temperature dynamics within a single ionic liquid. This finding is also surprising because dispersion interactions dominate the CO2-IL interaction energies, but are comparably constant across different geometries. An important practical consequence of this finding is that density functional theory is expected to be sufficiently accurate for constructing potential energy surfaces for CO2 in [C4C1IM][PF6], as needed for accurate anharmonic calculations to construct a reliable spectroscopic map. Similarly, we established appropriate computational and chemical models for treating the extended solvent environment. We found that a QM/MM treatment including at least 2 cation-ion pairs at the QM level and at least 32 pairs at the MM level is necessary to converge vibrational frequencies to within 1 cm-1. Using these insights, this work identifies a computational protocol as well as a chemical model necessary to construct accurate spectroscopic maps from first principles.

6.
J Phys Chem B ; 120(49): 12633-12642, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27973844

ABSTRACT

The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO2-[C4C1im][PF6] clusters extracted from an MD simulation. When the map was tested on 500 different CO2-[C4C1im][PF6] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm-1. The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.

7.
J Chem Phys ; 142(21): 212425, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049445

ABSTRACT

The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X](-) is the anion from the series hexafluorophosphate (PF6 (-)), tetrafluoroborate (BF4 (-)), bis-(trifluoromethyl)sulfonylimide (Tf2N(-)), triflate (TfO(-)), trifluoroacetate (TFA(-)), dicyanamide (DCA(-)), and thiocyanate (SCN(-))). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.

8.
J Phys Chem A ; 118(35): 7404-10, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-24576213

ABSTRACT

Organic piezoelectric materials are promising targets in applications such as energy harvesting or mechanical sensors and actuators. In a recent paper (Werling, K. A.; et al. J. Phys. Chem. Lett. 2013, 4, 1365-1370), we have shown that hydrogen bonding gives rise to a significant piezoelectric response. In this article, we aim to find organic hydrogen bonded systems with increased piezo-response by investigating different hydrogen bonding motifs and by tailoring the hydrogen bond strength via functionalization. The largest piezo-coefficient of 23 pm/V is found for the nitrobenzene-aniline dimer. We develop a simple, yet surprisingly accurate rationale to predict piezo-coefficients based on the zero-field compliance matrix and dipole derivatives. This rationale increases the speed of first-principles piezo-coefficient calculations by an order of magnitude. At the same time, it suggests how to understand and further increase the piezo-response. Our rationale also explains the remarkably large piezo-response of 150 pm/V and more for another class of systems, the "molecular springs" (Marvin, C.; et al. J. Phys. Chem. C 2013, 117, 16783-16790.).

9.
J Chem Phys ; 139(18): 184104, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24320251

ABSTRACT

We present a linear-scaling symmetry-adapted perturbation theory (SAPT) method that is based on an atomic orbital (AO) formulation of zeroth-order SAPT (SAPT0). The non-dispersive terms are realized with linear-scaling cost using both the continuous fast multipole method (CFMM) and the linear exchange (LinK) approach for integral contractions as well as our efficient Laplace-based coupled-perturbed self-consistent field method (DL-CPSCF) for evaluating response densities. The reformulation of the dispersion term is based on our linear-scaling AO Møller-Plesset second-order perturbation theory (AO-MP2) method, that uses our recently introduced QQR-type screening [S. A. Maurer, D. S. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 138, 014101 (2013)] for preselecting numerically significant energy contributions. Similar to scaled opposite-spin MP2, we neglect the exchange-dispersion term in SAPT and introduce a scaling factor for the dispersion term, which compensates for the error and at the same time accounts for basis set incompleteness effects and intramonomer correlation. We show in extensive benchmark calculations that the new scaled-dispersion (sd-)SAPT0 approach provides reliable results for small and large interacting systems where the results with a small 6-31G** basis are roughly comparable to supermolecular MP2 calculations in a triple-zeta basis. The performance of our method is demonstrated with timings on cellulose fragments, DNA systems, and cutouts of a protein-ligand complex with up to 1100 atoms on a single computer core.


Subject(s)
Quantum Theory , Algorithms , Cellulose/chemistry , DNA/chemistry , Ligands , Proteins/chemistry
10.
J Chem Phys ; 138(1): 014101, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23298022

ABSTRACT

Efficient estimates for the preselection of two-electron integrals in atomic-orbital based Møller-Plesset perturbation theory (AO-MP2) theory are presented, which allow for evaluating the AO-MP2 energy with computational effort that scales linear with molecular size for systems with a significant HOMO-LUMO gap. The estimates are based on our recently introduced QQR approach [S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012)], which exploits the asympotic decay of the integral values with increasing bra-ket separation as deduced from the multipole expansion and combines this decay behavior with the common Schwarz bound to a tight and simple estimate. We demonstrate on a diverse selection of benchmark systems that our AO-MP2 method in combination with the QQR-type estimates produces reliable results for systems with both localized and delocalized electronic structure, while in the latter case the screening essentially reverts to the common Schwarz screening. For systems with localized electronic structure, our AO-MP2 method shows an early onset of linear scaling as demonstrated on DNA systems. The favorable scaling behavior allows to compute systems with more than 1000 atoms and 10,000 basis functions on a single core that are clearly not accessible with conventional MP2 methods. Furthermore, our AO-MP2 method is particularly suited for parallelization and we present benchmark calculations on a protein-DNA repair complex comprising 2025 atoms and 20,371 basis functions.


Subject(s)
Models, Theoretical , DNA/chemistry , Models, Molecular , Nucleic Acid Hybridization
11.
J Chem Theory Comput ; 9(3): 1368-80, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-26587599

ABSTRACT

The performance of 24 density functionals, Hartree-Fock, and MP2 is assessed with respect to the CCSD(T)/CBS* energetics of 49 sulfate-water clusters with three to six water molecules. Included among the density functionals are GGA, meta-GGA, hybrid GGA, hybrid meta-GGA, and double hybrid density functionals, as well as the LDA. Three types of dispersion corrections (VV10, XDM, and -D) are tested in conjunction with these functionals. The 26 methods are compared using the relative and binding energies of the sulfate-water clusters as the main criteria. It was discovered that a majority of the tested density functionals are unable to simultaneously capture the physics necessary to describe both the relative and binding energies of the anionic solvation clusters. The three density functionals with the best overall performance are XYG3, ωB97X-2, and XYGJ-OS. The only other density functional that performs comparably to these three double hybrids is M11. A majority of the density functionals that contain a fraction of exact exchange tend to perform well only for the relative energies, while functionals lacking exact exchange generally perform poorly with respect to both criteria. However, the meta-GGA functional, M11-L, stands out due to its superior performance for the relative energies. While dispersion correction functionals cannot replace the accuracy provided by MP2 correlation, it is shown that the proper combination of a hybrid GGA functional (LC-ωPBE) with a dispersion correction functional (VV10) can lead to drastic improvements in the binding energies of the parent functional, while preserving its performance with respect to the relative energies. Ultimately, however, MP2 has the best overall performance out of the 26 benchmarked methods.

12.
J Phys Chem Lett ; 4(9): 1365-70, 2013 May 02.
Article in English | MEDLINE | ID: mdl-26282286

ABSTRACT

The piezoelectric properties of 2-methyl-4-nitroaniline crystals were explored qualitatively and quantitatively using an electrostatically embedded many-body (EE-MB) expansion scheme for the correlation energies of a system of monomers within the crystal. The results demonstrate that hydrogen bonding is an inherently piezoelectric interaction, deforming in response to the electrostatic environment. We obtain piezo-coefficients in excellent agreement with the experimental values. This approach reduces computational cost and reproduces the total resolution of the identity (RI)-Møller-Plesset second-order perturbation theory (RI-MP2) energy for the system to within 1.3 × 10(-5)%. Furthermore, the results suggest novel ways to self-assemble piezoelectric solids and suggest that accurate treatment of hydrogen bonds requires precise electrostatic evaluation. Considering the ubiquity of hydrogen bonds across chemistry, materials, and biology, a new electromechanical view of these interactions is required.

13.
J Am Chem Soc ; 134(47): 19468-76, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23072346

ABSTRACT

Product selectivity of alkane cracking catalysis in the H-MFI zeolite is investigated using both static and dynamic first-principles quantum mechanics/molecular mechanics simulations. These simulations account for the electrostatic- and shape-selective interactions in the zeolite and provide enthalpic barriers that are closely comparable to experiment. Cracking transition states for n-pentane lead to a metastable intermediate (a local minimum with relatively small barriers to escape to deeper minima) where the proton is shared between two hydrocarbon fragments. The zeolite strongly stabilizes these carbocations compared to the gas phase, and the conversion of this intermediate to more stable species determines the product selectivity. Static reaction pathways on the potential energy surface starting from the metastable intermediate include a variety of possible conversions into more stable products. One-picosecond quasiclassical trajectory simulations performed at 773 K indicate that dynamic paths are substantially more diverse than the potential energy paths. Vibrational motion that is dynamically sampled after the cracking transition state causes spilling of the metastable intermediate into a variety of different products. A nearly 10-fold change in the branching ratio between C2/C3 cracking channels is found upon inclusion of post-transition-state dynamics, relative to static electronic structure calculations. Agreement with experiment is improved by the same factor. Because dynamical effects occur soon after passing through the rate-limiting transition state, it is the dynamics, and not only the potential energy barriers, that determine the catalytic selectivity. This study suggests that selectivity in zeolite catalysis is determined by high temperature pathways that differ significantly from 0 K potential surfaces.


Subject(s)
Alkanes/chemistry , Quantum Theory , Zeolites/chemistry , Models, Molecular
14.
J Chem Phys ; 136(14): 144107, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22502501

ABSTRACT

A new integral estimate for four-center two-electron integrals is introduced that accounts for distance information between the bra- and ket-charge distributions describing the two electrons. The screening is denoted as QQR and combines the most important features of the conventional Schwarz screening by Häser and Ahlrichs published in 1989 [J. Comput. Chem. 10, 104 (1989)] and our multipole-based integral estimates (MBIE) introduced in 2005 [D. S. Lambrecht and C. Ochsenfeld, J. Chem. Phys. 123, 184101 (2005)]. At the same time the estimates are not only tighter but also much easier to implement, so that we recommend them instead of our MBIE bounds introduced first for accounting for charge-distance information. The inclusion of distance dependence between charge distributions is not only useful at the SCF level but is particularly important for describing electron-correlation effects, e.g., within AO-MP2 theory, where the decay behavior is at least 1/R(4) or even 1/R(6). In our present work, we focus on studying the efficiency of our QQR estimates within SCF theory and demonstrate the performance for a benchmark set of 44 medium to large molecules, where savings of up to a factor of 2 for exchange integrals are observed for larger systems. Based on the results of the benchmark set we show that reliable tightness of integral estimates is more important for the screening performance than rigorous upper bound properties.

17.
J Phys Chem A ; 115(41): 11438-54, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-21888323

ABSTRACT

We present a reinvestigation of sulfate-water clusters SO4(2-) (H2O)(n=3-7), which involves several new aspects. Using a joint molecular mechanics/first principles approach, we perform exhaustive searches for stable cluster geometries, showing that the sulfate-water landscape is much richer than anticipated previously. We check the compatibility of the new structures with experiment by comparing vertical detachment energies (VDEs) calculated at the B3LYP/6-311++G** level of theory and determine the energetic ordering of the isomers at the RI-MP2/aug-cc-pVTZ level. Our results are bench-marked carefully against reference energies of estimated CCSD(T)/aug-cc-VTZ quality and VDEs of CCSD(T)/aug-cc-pVDZ quality. Furthermore, we calculate anharmonic vibrational corrections for up to the n = 6 clusters, which are shown to be significant for isomer energy ordering. We use energy decomposition analysis (EDA) based on the absolutely localized fragment (ALMO) expansion to gain chemical insight into the binding motifs.


Subject(s)
Sulfates/chemistry , Thermodynamics , Water/chemistry , Electrons , Molecular Structure , Quantum Theory , Surface Properties
18.
J Phys Chem A ; 115(13): 2794-801, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21391690

ABSTRACT

A kinetic-energy-based fitting metric for application in the context of resolution of the identity second-order Møller-Plesset perturbation theory is presented, which is derived from the Poisson equation. Preliminary tests of the applicability include the evaluation of the error in the correlation energy, compared to standard Møller-Plesset perturbation theory, with respect to the auxiliary basis set employed. We comment on the potential merits of this fitting metric, compared to standard resolution of the identity second-order Møller-Plesset perturbation theory, and discuss its scaling behavior in the limit of large molecules.

19.
J Phys Chem A ; 115(23): 5928-35, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21405045

ABSTRACT

We present the simulated photoelectron spectrum (PES) for cyanide-water CN(H(2)O)(-) based on quasiclassical trajectory molecular dynamics (QCT-MD). Using density functional theory to generate trajectories and to calculate vertical detachment energies, we obtain simulated spectra that are in qualitative agreement with experiment. We obtain a theoretical 12 → 300 K temperature red shift of 0.1 eV as compared to an experimental redshift of 0.25 eV. The calculated linewidths of 0.3 eV are in excellent agreement with experiment. Our trajectories show that the temperature red shift as being dominated by dynamics within the basin of the N-bound minimum, however, at 300 K we predict conversion into the basin of the C-bound minimum, equilibrating at a 80:20 ratio of N- vs C-bound mixture. We discuss the potential advantages of QCT-MD over anharmonic Franck-Condon analysis such as natural incorporation of anharmonicity (as necessary for weakly bound systems), and reduced computational scaling, but also drawbacks such as neglect of final-state (e.g., Duschinsky) effects.


Subject(s)
Cyanides/chemistry , Molecular Dynamics Simulation , Water/chemistry , Anions/chemistry , Photoelectron Spectroscopy , Quantum Theory
20.
Faraday Discuss ; 150: 345-62; discussion 391-418, 2011.
Article in English | MEDLINE | ID: mdl-22457956

ABSTRACT

The absolutely localized molecular orbital (ALMO) model is a fully variational approach which permits polarization of molecules interacting in a cluster while prohibiting charge-transfer (or dative interactions) between individual molecules. The ALMO model can be applied within any density functional theory calculation--the B3LYP functional is employed in this work. ALMO DFT calculations of observables such as optimized geometry, vibrational frequencies and their intensities, and vertical detachment energies are performed for the water dimer, the chloride-water complex and the cyanide-water complex. The vibrational spectra are obtained both within the harmonic approximation and by quasiclassical trajectory simulations. By comparing these ALMO DFT calculations with full DFT calculations using precisely the same functional and basis, the role of charge-transfer on observables in these model hydrogen bonding systems can be assessed. The results can be further interpreted using ALMO-based energy decomposition analysis, which help to reveal the origin of sensitivity or insensitivity of observables to dative interactions. Analysis of the results also suggests that the B3LYP functional, while qualitatively adequate, appears to somewhat overestimate charge-transfer effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...