Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Chemosphere ; : 142619, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880257

ABSTRACT

The present study aims to compare and assess the toxicity induced by aged (irradiated with ultraviolet radiation for 120 days) polyethylene microplastics (PE-MPs) in comparison to virgin (non-irradiated) ones, after feeding the freshwater fish Perca fluviatilis. To this end, MPs mediated genotoxicity was assessed by the investigation of micronucleus nuclear abnormalities frequency in fish blood, and the degree of DNA damage in the liver and muscle tissues, while metabolic alterations were also recorded in both tissues. Results showed that both virgin and aged PE-MPs induced signaling pathways leading to DNA damage and nuclear abnormalities, as well as metabolites changes in all tissues studied. Metabolic changes revealed that the metabolism of nucleic acids, energy, amino acids, and neurotransmitters was more disrupted in the liver and by aged PE-MPs compared to muscles. Fish fed with aged PE-MPs exhibited greater DNA damage, while blood cells of fish fed with virgin PE-MPs seemed to be more vulnerable to nuclear abnormalities in relation to those fed with aged PE-MPs. Moreover, aged PE-MPs induced more acute overall effects on the metabolic profiles of fish tissues, and initiated stronger stress responses, inflammation, and cellular damages in fish tissues in relation to virgin ones. Characterization of both virgin and aged MPs revealed that the latter exhibited lower crystallinity and melting point, more irregular shapes and higher moiety of oxygen and carbonyl groups, which could be attributed for their observed higher toxicity. The research outcomes provide significant insights for advancing toxicological investigations in this field.

2.
Materials (Basel) ; 17(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612120

ABSTRACT

Poly(ethylene furanoate) (PEF)-based nanocomposites were fabricated with silver (Ag) and titanium dioxide (TiO2) nanoparticles by the in-situ polymerization method. The importance of this research work is to extend the usage of PEF-based nanocomposites with improved material properties. The PEF-Ag and PEF-TiO2 nanocomposites showed a significant improvement in color concentration, as determined by the color colorimeter. Scanning electron microscopy (SEM) photographs revealed the appearance of small aggregates on the surface of nanocomposites. According to crystallinity investigations, neat PEF and nanocomposites exhibit crystalline fraction between 0-6%, whereas annealed samples showed a degree of crystallinity value above 25%. Combining the structural and molecular dynamics observations from broadband dielectric spectroscopy (BDS) measurements found strong interactions between polymer chains and nanoparticles. Contact angle results exhibited a decrease in the wetting angle of nanocomposites compared to neat PEF. Finally, antimicrobial studies have been conducted, reporting a significant rise in inhibition of over 15% for both nanocomposite films against gram-positive and gram-negative bacteria. From the overall results, the synthesized PEF-based nanocomposites with enhanced thermal and antimicrobial properties may be optimized and utilized for the secondary packaging (unintended food-contact) materials.

3.
Sci Total Environ ; 931: 172867, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38688363

ABSTRACT

Untangling the consumption rates of psychiatric drugs and their metabolites/ transformation products-(TPs) through wastewater gains attention lately. However, the potential environmental impact caused by their release remains ambiguous. As it follows, the monitoring of this class of pharmaceuticals as well as the evaluation of their potential toxicity is a matter of high concern. In the light of the above, here, wastewater samples, were collected in a 1-year and a half sampling campaign (2020-2021) and were further subjected to solid phase extraction. A Q Exactive Focus Orbitrap mass analyzer was employed for the analysis of the samples. For the data curation, except of the monitoring of targets, a comprehensive suspect screening workflow was developed and slightly optimized based on a lab made HRMS database for the investigation of legally or illegally prescribed psychiatric drugs and their relevant metabolites/TPs in influents and effluents. Carbamazepine and amisulpride were quantified at the highest mean concentrations 243 and 225 ng/L respectively, in influents. In effluents, the highest mean concentrations were calculated for carbamazepine (180 ng/L) and venlafaxine (117 ng/L). The implementation of suspect screening approach enhanced the comprehensiveness of analysis by detecting 29 compounds not included in the target list. O-Desmethylvenlafaxine was the predominant metabolite in influents presenting a mean concentration equal to 87 ng/L while the same pattern was also noticed in effluents where the mean concentration was up to 91 ng/L. From the group of suspect compounds for which no analytical standards were available, the predominant compounds with detection frequency 100 % were norephedrine and codeine in influents while in effluents, oxazepam was detected in 81 % of the analyzed samples. Finally, in silico and mathematical tools were employed for the assessment of the risk posed to environmental systems. Most of the detected compounds present high risk in all trophic levels.


Subject(s)
Environmental Monitoring , Psychotropic Drugs , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Psychotropic Drugs/analysis , Environmental Monitoring/methods , Mass Spectrometry/methods , Solid Phase Extraction
4.
Sci Total Environ ; 918: 170616, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38311086

ABSTRACT

The present study investigates the morphological, physicochemical, and structural changes occurred by the UV-B aging process of low-density polyethylene microplastics (LDPE MPs), as well as the bioactive potential of both pristine and UVaged MPs towards healthy peripheral blood lymphocytes. Specifically, LDPE MPs (100-180 µm) prepared by mechanical milling of LDPE pellets, were UV-B irradiated for 120 days (wavelength 280 nm; temperature 25 °C; relative humidity 50 %) and further examined for alterations in their particle size and surface, their functional groups, thermal stability, and crystallinity (by means of SEM, FTIR spectroscopy, XRD patterns, and TGA measurements, respectively). In parallel, isolated human peripheral blood lymphocytes were treated with different concentrations (25-500 µg mL-1) of either pristine or aged MPs (UVfree and UV120d LDPE MPs) for assessing the cytogenotoxic (by means of trypan blue exclusion test and the cytokinesis-block micronucleus assay using cytochalasin-B) and oxidative effects (using the DCFH-DA staining) in both cases. According to the results, UVfree and UV120d-LDPE MPs, with a size ranging from 100 to 180 µm, can differentially promote cytogenotoxic and oxidative alterations in human lymphocytes. In fact, UVfree LDPE MPs not being able to be internalized by cells due to their size, could indirectly promote the onset of mild oxidative and cytogenotoxic damage in human peripheral lymphocytes, via a dose-dependent but size-independent manner. The latter is more profound in case of the irregular-shaped UV120d-LDPE MPs, bearing improved dispersibility and sharp edges (by means of cracks and holes), as well as oxygen-containing and carbonyl groups. To our knowledge, the present findings provide new data regarding the bioactive behavior of pristine and UV-B aged LDPE MPs, at least in the in vitro biological model tested, thus giving new evidence for their size-independent and/or indirect mode of action.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Aged , Polyethylene/toxicity , Polyethylene/chemistry , Plastics , Particle Size , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/toxicity
5.
Anal Methods ; 16(6): 873-883, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38240475

ABSTRACT

In the present study a novel, cost-effective, environmentally friendly, and efficient analytical method was developed to analyze fungicide residues in water and wine. The method relies on the application of a newly developed sorbent nanomaterial named Nano-Cs-NAT, synthesized by modifying chitosan, a naturally occurring, low-cost polysaccharide, through grafting with two acrylic monomers and a cross-linker. Nano-Cs-NAT was introduced as analytical sorbent for Dispersive Micro Solid Phase Extraction (D-µ-SPE) before Liquid Chromatography-Orbitrap High-Resolution Mass Spectrometry (LC-Orbitrap HRMS) analysis of twelve fungicides commonly used in viticulture (among the others, triazoles, strobilurines and N-substituted imidazoles). Characterization of the sorbent was conducted, confirming the successful acrylation of chitosan. A multivariate approach was employed to optimize D-µ-SPE extraction parameters. The material was found to be highly effective in simultaneously purifying and concentrating the target analytes, enhancing overall analytical efficiency and sensitivity. The Nano-Cs-NAT-D-µ-SPE-LC-Orbitrap-HRMS method was thoroughly validated, exhibiting good recoveries (72-104%), reproducibility (average RSD ≤ 6%) and repeatability (average RSD ≤ 7%). It also achieved low limits of detection (LOD) in river water (average LOD of 0.04 µg L-1) and wine (average LOD of 0.72 µg kg-1), highlighting its potential for routine fungicide residue analysis. This developed method addresses environmental and food safety concerns by providing an efficient solution for detecting fungicide residues in waters and wine.


Subject(s)
Chitosan , Fungicides, Industrial , Wine , Fungicides, Industrial/analysis , Chitosan/analysis , Wine/analysis , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry , Water
6.
Sci Total Environ ; 914: 169832, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190919

ABSTRACT

Antibiotics, recognized as Emerging Contaminants (ECs), have raised concerns due to their pervasive presence in wastewater treatment plants (WWTPs) and subsequent release into aquatic environments, posing potential ecological risks and contributing to the development of antibiotic-resistant genes. The COVID-19 pandemic prompted an unprecedented surge in antibiotic consumption, necessitating a comprehensive assessment of its impact on antibiotic levels in wastewater. In this light, a four-year monitoring study (2020-2023) was conducted in a WWTP located in the Northern Greece (Thessaloniki), employing High-Resolution Mass Spectrometry (HRMS) technology to monitor twenty antibiotics, during distinct phases pre-, during, and post-COVID-19. Our findings revealed that macrolides and fluoroquinolones were among the most often detected categories during the sampling period. Among the compounds detected, azithromycin and clarithromycin showed the most significant increases during the pandemic, doubling their average concentrations. This establishes a clear correlation between the rise in their concentrations and the incidence of COVID-19 cases. A general downward trend after 2021 was attributed to the new restrictions posed in Greece during this year, regarding the liberal prescription of antibiotics. Seasonal variation revealed a minute augmentation of antibiotics' use during the months that infections are increased. Additionally, the study highlights the ecological risks associated with elevated antibiotic presence and emphasizes the need for continued monitoring and regulatory measures to mitigate potential ecological repercussions. These findings contribute to our understanding of the complex interplay between antibiotic consumption, environmental presence, and the COVID-19 pandemic's impact on antibiotic pollution in WWTPs.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Wastewater , Anti-Bacterial Agents/analysis , Pandemics , Waste Disposal, Fluid , Greece/epidemiology , Environmental Monitoring , Water Pollutants, Chemical/analysis , COVID-19/epidemiology
7.
Environ Sci Technol ; 57(40): 14827-14838, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37746919

ABSTRACT

Non-targeted analysis (NTA) has made critical contributions in the fields of environmental chemistry and environmental health. One critical bottleneck is the lack of available analytical standards for most chemicals in the environment. Our study aims to explore a novel approach that integrates measurements of equilibrium partition ratios between organic solvents and water (KSW) to predictions of molecular structures. These properties can be used as a fingerprint, which with the help of a machine learning algorithm can be converted into a series of functional groups (RDKit fragments), which can be used to search chemical databases. We conducted partitioning experiments using a chemical mixture containing 185 chemicals in 10 different organic solvents and water. Both a liquid chromatography quadrupole time-of-flight mass spectrometer (LC-QTOF MS) and a LC-Orbitrap MS were used to assess the feasibility of the experimental method and the accuracy of the algorithm at predicting the correct functional groups. The two methods showed differences in log KSW with the QTOF method showing a mean absolute error (MAE) of 0.22 and the Orbitrap method 0.33. The differences also culminated into errors in the predictions of RDKit fragments with the MAE for the QTOF method being 0.23 and for the Orbitrap method being 0.31. Our approach presents a new angle in structure elucidation for NTA and showed promise in assisting with compound identification.


Subject(s)
Water , Mass Spectrometry/methods , Chromatography, Liquid/methods , Solvents
8.
Sci Total Environ ; 904: 166599, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37640083

ABSTRACT

In recent years, transformation products-(TPs) of pharmaceuticals in the environment have received considerable attention. In this context, here, a customized overview of transformation of Furosemide-(FRS) in aqueous matrices treated by photo-oxidation is provided as a proof of concept. Hence, the primary goal of the study was to display an integrated strategy by combining the target (parent-molecule) and suspect screening-(SS) approaches (TPs) in order to build an in-house High-Resolution mass spectrometry (HRMS) database able to provide reference information (chromatographic/spectral) for environmental investigations in complex matrices (wastewaters/landfill leachates). Data analysis was performed by optimizing a SS workflow. Additional confirmation for the proposed structural elucidation was provided by correlating retention time to the proposed structure employing three prediction models. This approach was applied for the tentative identification of 35 TPs of FRS, 28 of which are reported herein for the first time. Finally, SS and non-target analysis (NTA) have been successfully applied for retrospective screening of FRS and its TPs in real samples. The findings demonstrated that SS allows the proper identification of TPs of FRS in complex matrices proving its outstanding importance compared to NTA. In total, six TPs were identified by SS with potential ecotoxicological implications for two of them according to in silico risk assessment.


Subject(s)
Water Pollutants, Chemical , Chromatography, Liquid , Water Pollutants, Chemical/analysis , Wastewater , Furosemide , Retrospective Studies , Workflow
9.
Polymers (Basel) ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37376353

ABSTRACT

This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples' intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure-properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82-87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.

10.
J Hazard Mater ; 458: 131854, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37354716

ABSTRACT

Persistent, mobile, and toxic chemicals (PMT), such as the antimycotic climbazole-(CBZ), proliferate in water cycle and imperil drinking water quality, sparking off research about their environmental fate. Unlike the parent compound, its transformation products-(TPs) are scarcely investigated, much less as PMTs. To this end, phototransformation of CBZ was investigated. A novel suspect-screening workflow was developed and optimized by cross-comparing the results of the identified photo-TPs against literature data to create an enhanced HRMS-database for environmental investigations of CBZ/TPs in the water cycle. In total, 24 TPs were identified, 14 of which are reported for the first time. Isomerism, dechlorination, hydroxylation, and cleavage of the ether or C-N bond are suggested as the main transformation routes. A screening of CBZ/TPs was conducted in wastewater, leachates, surface, and groundwater, revealing a maximum concentration of 464.8 ng/L in groundwater. In silico and in vitro methods were used for toxicity assessment, indicating toxicity for CBZ and some TPs. Seemingly, CBZ is rightly considered as PMT, and a higher potential to occur in surface or groundwater than non-PM chemicals appears. Likewise, the occurrence of TPs due to PMT properties or emission patterns was evaluated.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Cycle , Wastewater , Imidazoles , Water Pollutants, Chemical/chemistry
12.
J Hazard Mater ; 454: 131478, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37116332

ABSTRACT

Bisphenols are widely recognised as toxic compounds that potentially threaten the environment and public health. Here we report the use of cold atmospheric pressure plasma (CAP) to remove bisphenol A (BPA) and bisphenol S (BPS) from aqueous systems. Additionally, methanol was added as a radical scavenger to simulate environmental conditions. After 480 s of plasma treatment, 15-25 % of BPA remained, compared to > 80 % of BPS, with BPA being removed faster (-kt = 3.4 ms-1, half-life = 210 s) than BPS (-kt = 0.15 ms-1, half-life 4700 s). The characterisation of plasma species showed that adding a radical scavenger affects the formation of reactive oxygen and nitrogen species, resulting in a lower amount of ˙OH, H2O2, and NO2- but a similar amount of NO3-. In addition, a non-target approach enabled the elucidation of 11 BPA and five BPS transformation products. From this data, transformation pathways were proposed for both compounds, indicating nitrification with further cleavage, demethylation, and carboxylation, and the coupling of smaller bisphenol intermediates. The toxicological characterisation of the in vitro HepG2 cell model has shown that the mixture of transformation products formed during CAP is less toxic than BPA and BPS, indicating that CAP is effective in safely degrading bisphenols.


Subject(s)
Benzhydryl Compounds , Hydrogen Peroxide , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/metabolism , Phenols/toxicity , Phenols/metabolism
13.
Sci Total Environ ; 881: 163350, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37023800

ABSTRACT

Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.


Subject(s)
Endocrine Disruptors , Placenta , Infant , Adult , Humans , Pregnancy , Female , Child , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Milk, Human/chemistry , Plasma , Biological Monitoring
14.
Environ Res ; 227: 115790, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37003551

ABSTRACT

This study investigated the bio-degradation kinetics of tetramethyl bisphenol F (TMBPF), a non-estrogenic alternative to bisphenol A (BPA). Batch biotransformation experiments were performed whereby samples were inoculated with activated sludge and analysed using liquid chromatography-Orbitrap-tandem mass spectrometry (LC-Orbitrap-MS) utilising two non-targeted workflows (commercial and freely available online) for biotransformation products (BTP) identification. The degradation of TMBPF followed single first-order reaction kinetics and depended on the initial concentration (ci) with faster degradation -kt = 0.16, (half-life = 4.4 days) at lower concentrations ci = 0.1 mg L-1, compared with -kt = 0.02 (half-live = 36.4 days) at ci = 10.0 mg L-1. After 18 days, only 8% of the original TMBPF remained at the lowest tested concentration (0.1 mg L-1). Twelve BTPs were identified, three of which were workflow and one condition-specific. The highest relative quantities of BTPs were observed in nutrient-mineral and mineral media after ten days, while after 14 days, 36 and 31% of TMBPF (ci = 1 mg L-1) remained in the nutrient-mineral and mineral media, respectively. Also, the kinetics of TMBPF and its BTPs were the same with and without an additional carbon source. A newly proposed biodegradation pathway for TMBPF involves cleavage of the methylene bridge, hydroxylation with further oxidation, sulphation, nitrification, nitro reduction with further oxidation, acetylation, and glycine conjugation, providing a deeper insight into the fate of TMBPF during biological wastewater treatment.


Subject(s)
Sewage , Wastewater , Biotransformation , Biodegradation, Environmental , Kinetics
15.
Membranes (Basel) ; 13(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36837630

ABSTRACT

Graphene is a popular material with outstanding properties due to its single layer. Graphene and its oxide have been put to the test as nano-sized building components for separation membranes with distinctive structures and adjustable physicochemical attributes. Graphene-based membranes have exhibited excellent water and gas purification abilities, which have garnered the spotlight over the past decade. This work aims to examine the most recent science and engineering cutting-edge advances of graphene-based membranes in regard to design, production and use. Additional effort will be directed towards the breakthroughs in synthesizing graphene and its composites to create various forms of membranes, such as nanoporous layers, laminates and graphene-based compounds. Their efficiency in separating and decontaminating water via different techniques such as cross-linking, layer by layer and coating will also be explored. This review intends to offer comprehensive, up-to-date information that will be useful to scientists of multiple disciplines interested in graphene-based membranes.

16.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838865

ABSTRACT

This study explores the photocatalytic transformation of the antiviral drug abacavir employing different advanced oxidation processes (AOPs) such as UV/TiO2, UV/MOF/H2O2, UV/MOF/S2O82-, UV/Fe2+/H2O2, and UV/Fe2+/S2O82-. All processes appear to be effective in eliminating abacavir within a few minutes, while the evolution profile of the basic transformation product, descyclopropyl-abacavir (TP-247) was also monitored. Moreover, the implementation of the most efficient technologies towards the removal of abacavir in different matrices such as wastewater effluent and leachate was also assessed, revealing that the organic matter present or the inorganic constituents can retard the whole process. Four major transformation products were detected, and their time-evolution profiles were recorded in all studied matrices, revealing that different transformation pathways dominate in each matrix. Finally, the prediction of the toxicity of the major TPs employing ECOSAR software was conducted and showed that only hydroxylation can play a detoxification role in the treated solution.


Subject(s)
Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide , Oxidation-Reduction , Wastewater , Ultraviolet Rays
17.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231946

ABSTRACT

Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.

18.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430357

ABSTRACT

The massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8−10 µm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P. fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics/metabolism , Zebrafish/metabolism , Polypropylenes , Ecosystem , Water Pollutants, Chemical/analysis , Fresh Water
19.
Molecules ; 27(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234915

ABSTRACT

Optimized Pt-based methanol oxidation reaction (MOR) anodes are essential for commercial direct methanol fuel cells (DMFCs) and methanol electrolyzers for hydrogen production. High surface area Ti supports are known to increase Pt catalytic activity and utilization. Pt has been deposited on black titania nanotubes (bTNTs), Ti felts and, for comparison, Ti foils by a galvanic deposition process, whereby Pt(IV) from a chloroplatinate solution is spontaneously reduced to metallic Pt (at 65 °C) onto chemically reduced (by CaH2) TNTs (resulting in bTNTs), chemically etched (HCl + NaF) Ti felts and grinded Ti foils. All Pt/Ti-based electrodes prepared by this method showed enhanced intrinsic catalytic activity towards MOR when compared to Pt and other Pt/Ti-based catalysts. The very high/high mass specific activity of Pt/bTNTs (ca 700 mA mgPt-1 at the voltammetric peak of 5 mV s-1 in 0.5 M MeOH) and of Pt/Ti-felt (ca 60 mA mgPt-1, accordingly) make these electrodes good candidates for MOR anodes and/or reactive Gas Diffusion Layer Electrodes (GDLEs) in DMFCs and/or methanol electrolysis cells.

20.
Front Plant Sci ; 13: 908669, 2022.
Article in English | MEDLINE | ID: mdl-36110355

ABSTRACT

Bacteria influence plant growth and development and therefore are attractive resources for applications in agriculture. However, little is known about the impact of these microorganisms on secondary metabolite (SM) production by medicinal plants. Here we assessed, for the first time, the effects of bacteria on the modulation of SM production in the medicinal plant Lithospermum officinale (Boraginaceae family) with a focus on the naphthoquinones alkannin/shikonin and their derivatives (A/Sd). The study was conducted in an in vitro cultivation system developed for that purpose, as well as in a greenhouse. Targeted and non-targeted metabolomics were performed, and expression of the gene PGT encoding for a key enzyme in the A/S biosynthesis pathway was evaluated with qPCR. Three strains, Chitinophaga sp. R-73072, Xanthomonas sp. R-73098 and Pseudomonas sp. R-71838 induced a significant increase of A/Sd in L. officinale in both systems, demonstrating the strength of our approach for screening A/Sd-inducing bacteria. The bacterial treatments altered other plant metabolites derived from the shikimate pathway as well. Our results demonstrate that bacteria influence the biosynthesis of A/Sd and interact with different metabolic pathways. This work highlights the potential of bacteria to increase the production of SM in medicinal plants and reveals new patterns in the metabolome regulation of L. officinale.

SELECTION OF CITATIONS
SEARCH DETAIL
...