Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(15): 4070-4075, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38587257

ABSTRACT

Nuclear quantum effects play an important role in the structure and thermodynamics of aqueous systems. By performing a many-body expansion with nuclear-electronic orbital (NEO) theory, we show that proton quantization can give rise to significant energetic contributions for many-body interactions spanning several molecules in single-point energy calculations of water clusters. Although zero-point motion produces a large increase in energy at the one-body level, nuclear quantum effects serve to stabilize higher-order molecular interactions. These results are significant because they demonstrate that nuclear quantum effects play a nontrivial role in many-body interactions of aqueous systems. Our approach also provides a pathway for incorporating nuclear quantum effects into water potential energy surfaces. The NEO approach is advantageous for many-body expansion analyses because it includes nuclear quantum effects directly in the energies.

2.
J Chem Theory Comput ; 19(24): 9009-9017, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38090757

ABSTRACT

The Dirac-Coulomb-Breit (DCB) operator is widely recognized for its ability to accurately capture relativistic effects and spin-physics in molecular calculations. However, due to its high computational cost, there is a need to develop low-scaling approximations without compromising accuracy. To tackle this challenge, it becomes essential to gain a deeper understanding of the DCB operator's behavior. This work aims to explore local integral approximations, shedding light on the locality of the parts of the charge-current distribution due to the small component. In particular, we propose an atomic Breit approximation that leverages an analysis of the behavior observed in a series of gold chains. Through benchmark studies of metal complexes, we evaluated the accuracy and performance of the proposed atomic Breit approximation. This work provides a comprehensive understanding of the behavior of the charge-current distribution in terms of its contributions from its AO basis constituents, facilitating the development of low-scaling methods that strike a balance between computational efficiency and accuracy.

3.
J Phys Chem A ; 127(44): 9322-9333, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37889479

ABSTRACT

Accurate simulations of many chemical processes require the inclusion of both nuclear quantum effects and a solvent environment. The nuclear-electronic orbital (NEO) approach, which treats electrons and select nuclei quantum mechanically on the same level, combined with a polarizable continuum model (PCM) for the solvent environment, addresses this challenge in a computationally practical manner. In this work, the NEO-PCM approach is extended beyond the IEF-PCM (integral equation formalism PCM) and C-PCM (conductor PCM) approaches to the SS(V)PE (surface and simulation of volume polarization for electrostatics) and ddCOSMO (domain decomposed conductor-like screening model) approaches. IEF-PCM, SS(V)PE, C-PCM, and ddCOSMO all exhibit similar solvation energies as well as comparable nuclear polarization within the NEO framework. The calculations show that the nuclear density does not leak out of the molecular cavity because it is much more localized than the electronic density. Finally, the polarization of quantized protons is analyzed in both continuum solvent and explicit solvent environments described by the polarizable MB-pol model, illustrating the impact of specific hydrogen-bonding interactions captured only by explicit solvation. These calculations highlight the relationship among solvation formalism, nuclear polarization, and energetics.

4.
J Chem Theory Comput ; 19(13): 3839-3848, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37329317

ABSTRACT

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods allow simulations of chemical reactions in atomistic solvent and heterogeneous environments such as proteins. Herein, the nuclear-electronic orbital (NEO) QM/MM approach is introduced to enable the quantization of specified nuclei, typically protons, in the QM region using a method such as NEO-density functional theory (NEO-DFT). This approach includes proton delocalization, polarization, anharmonicity, and zero-point energy in geometry optimizations and dynamics. Expressions for the energies and analytical gradients associated with the NEO-QM/MM method, as well as the previously developed polarizable continuum model (NEO-PCM), are provided. Geometry optimizations of small organic molecules hydrogen bonded to water in either dielectric continuum solvent or explicit atomistic solvent illustrate that aqueous solvation can strengthen hydrogen-bonding interactions for the systems studied, as indicated by shorter intermolecular distances at the hydrogen-bond interface. We then performed a real-time direct dynamics simulation of a phenol molecule in explicit water using the NEO-QM/MM method. These developments and initial examples provide the foundation for future studies of nuclear-electronic quantum dynamics in complex chemical and biological environments.

5.
J Phys Chem Lett ; 14(12): 2990-2995, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36942912

ABSTRACT

To explicitly account for nuclear quantum effects and solvent environments in simulations of chemical processes, the nuclear-electronic orbital approach is coupled with a polarizable continuum model (PCM). This NEO-PCM approach is used to explore the influence of solvation on nuclear polarization through applications to a water dimer and a set of protonated water tetramers. Nuclear polarization in these species is analyzed in terms of changes in proton density and oxygen-hydrogen bond length. Solvation is shown to enhance nuclear polarization with increasing dielectric constant. For the water dimer, the internal, hydrogen-bonded proton is shown to polarize more than the external, free proton. Moreover, proton quantization leads to greater solvent polarization through their mutual polarization. These calculations highlight the complex interplay among electronic, nuclear, and solvent polarization in chemical systems.

6.
J Chem Theory Comput ; 18(6): 3410-3426, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35506889

ABSTRACT

We investigate the interplay between functional-driven and density-driven errors in different density functional approximations within density functional theory (DFT) and the implications of these errors for simulations of water with DFT-based data-driven potentials. Specifically, we quantify density-driven errors in two widely used dispersion-corrected functionals derived within the generalized gradient approximation (GGA), namely BLYP-D3 and revPBE-D3, and two modern meta-GGA functionals, namely strongly constrained and appropriately normed (SCAN) and B97M-rV. The effects of functional-driven and density-driven errors on the interaction energies are first assessed for the water clusters of the BEGDB dataset. Further insights into the nature of functional-driven errors are gained from applying the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) to the interaction energies, which demonstrates that functional-driven errors are strongly correlated with the nature of the interactions. We discuss cases where density-corrected DFT (DC-DFT) models display higher accuracy than the original DFT models and cases where reducing the density-driven errors leads to larger deviations from the reference energies due to the presence of large functional-driven errors. Finally, molecular dynamics simulations are performed with data-driven many-body potentials derived from DFT and DC-DFT data to determine the effect that minimizing density-driven errors has on the description of liquid water. Besides rationalizing the performance of widely used DFT models of water, we believe that our findings unveil fundamental relations between the shortcomings of some common DFT approximations and the requirements for accurate descriptions of molecular interactions, which will aid the development of a consistent, DFT-based framework for the development of data-driven and machine-learned potentials for simulations of condensed-phase systems.


Subject(s)
Molecular Dynamics Simulation , Water
7.
J Chem Phys ; 156(16): 161103, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35490008

ABSTRACT

The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional has been shown to overcome the limitations of traditional DFAs as it is free of delocalization error. To determine if DM21 can enable a molecular-level description of the physical properties of aqueous systems within Kohn-Sham DFT, we assess the accuracy of the DM21 functional for neutral, protonated, and deprotonated water clusters. We find that the ability of DM21 to accurately predict the energetics of aqueous clusters varies significantly with cluster size. Additionally, we introduce the many-body MB-DM21 potential derived from DM21 data within the many-body expansion of the energy and use it in simulations of liquid water as a function of temperature at ambient pressure. We find that size-dependent functional-driven errors identified in the analysis of the energetics of small clusters calculated with the DM21 functional result in the MB-DM21 potential systematically overestimating the hydrogen-bond strength and, consequently, predicting a more ice-like local structure of water at room temperature.


Subject(s)
Water , Density Functional Theory , Hydrogen Bonding , Water/chemistry
8.
J Phys Chem Lett ; 13(16): 3652-3658, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35436129

ABSTRACT

For the past 50 years, researchers have sought molecular models that can accurately reproduce water's microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima near 223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ∼208 K. A local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is found to be the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water's physical properties across broad ranges of thermodynamic states, including the so-called water's "no man's land" which is difficult to probe experimentally.


Subject(s)
Molecular Dynamics Simulation , Water , Hydrogen Bonding , Temperature , Thermodynamics , Water/chemistry
9.
Nat Commun ; 12(1): 6359, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34737311

ABSTRACT

Density functional theory (DFT) has been extensively used to model the properties of water. Albeit maintaining a good balance between accuracy and efficiency, no density functional has so far achieved the degree of accuracy necessary to correctly predict the properties of water across the entire phase diagram. Here, we present density-corrected SCAN (DC-SCAN) calculations for water which, minimizing density-driven errors, elevate the accuracy of the SCAN functional to that of "gold standard" coupled-cluster theory. Building upon the accuracy of DC-SCAN within a many-body formalism, we introduce a data-driven many-body potential energy function, MB-SCAN(DC), that quantitatively reproduces coupled cluster reference values for interaction, binding, and individual many-body energies of water clusters. Importantly, molecular dynamics simulations carried out with MB-SCAN(DC) also reproduce the properties of liquid water, which thus demonstrates that MB-SCAN(DC) is effectively the first DFT-based model that correctly describes water from the gas to the liquid phase.

10.
J Chem Theory Comput ; 17(9): 5635-5650, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34370954

ABSTRACT

We present a general framework for the development of data-driven many-body (MB) potential energy functions (MB-QM PEFs) that represent the interactions between small molecules at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of MB-QM PEFs for water is rigorously derived from density functionals belonging to different rungs across Jacob's ladder of approximations within density functional theory (MB-DFT) and from Møller-Plesset perturbation theory (MB-MP2). Through a systematic analysis of individual MB contributions to the interaction energies of water clusters, we demonstrate that all MB-QM PEFs preserve the same accuracy as the corresponding ab initio calculations, with the exception of those derived from density functionals within the generalized gradient approximation (GGA). The differences between the DFT and MB-DFT results are traced back to density-driven errors that prevent GGA functionals from accurately representing the underlying molecular interactions for different cluster sizes and hydrogen-bonding arrangements. We show that this shortcoming may be overcome, within the MB formalism, by using density-corrected functionals (DC-DFT) that provide a more consistent representation of each individual MB contribution. This is demonstrated through the development of a MB-DFT PEF derived from DC-PBE-D3 data, which more accurately reproduce the corresponding ab initio results.

11.
J Chem Theory Comput ; 17(6): 3739-3749, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34036788

ABSTRACT

We present a systematic analysis of the accuracy of a series of SCANα functionals for water, with varying fractions (α) of exact exchange, which are constructed through the adiabatic connection formula. Our results indicate that all SCANα functionals exhibit substantial errors in the representation of the water 2-body energies. Importantly, the inclusion of exact exchange is found to have opposite effects on the ability of the SCANα functionals to describe the interaction energies of water clusters with 2-dimensional and 3-dimensional hydrogen-bonding arrangements. These errors are found to directly affect the ability of the SCANα functionals to describe the structure of liquid water at ambient conditions, which is investigated using explicit many-body models (MB-SCANα) derived from the corresponding SCANα data. In particular, it is found that all MB-SCANα models predict a more compact first hydration shell, which results in a denser liquid with a more ice-like structure. These apparent opposite trends can be explained by the inability of the SCANα functionals to provide a balanced description of the water 2B and 3B energies at the fundamental level. The analyses presented in this study provide new insights that can guide future developments of improved exchange-correlation functionals for aqueous systems.

12.
J Chem Theory Comput ; 17(7): 3931-3945, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34029079

ABSTRACT

Dinitrogen pentoxide (N2O5) is an important intermediate in the atmospheric chemistry of nitrogen oxides. Although there has been much research, the processes that govern the physical interactions between N2O5 and water are still not fully understood at a molecular level. Gaining a quantitative insight from computer simulations requires going beyond the accuracy of classical force fields while accessing length scales and time scales that are out of reach for high-level quantum-chemical approaches. To this end, we present the development of MB-nrg many-body potential energy functions for nonreactive simulations of N2O5 in water. This MB-nrg model is based on electronic structure calculations at the coupled cluster level of theory and is compatible with the successful MB-pol model for water. It provides a physically correct description of long-range many-body interactions in combination with an explicit representation of up to three-body short-range interactions in terms of multidimensional permutationally invariant polynomials. In order to further investigate the importance of the underlying interactions in the model, a TTM-nrg model was also devised. TTM-nrg is a more simplistic representation that contains only two-body short-range interactions represented through Born-Mayer functions. In this work, an active learning approach was employed to efficiently build representative training sets of monomer, dimer, and trimer structures, and benchmarks are presented to determine the accuracy of our new models in comparison to a range of density functional theory methods. By assessing the binding curves, distortion energies of N2O5, and interaction energies in clusters of N2O5 and water, we evaluate the importance of two-body and three-body short-range potentials. The results demonstrate that our MB-nrg model has high accuracy with respect to the coupled cluster reference, outperforms current density functional theory models, and thus enables highly accurate simulations of N2O5 in aqueous environments.

13.
J Chem Theory Comput ; 16(12): 7462-7472, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33213149

ABSTRACT

We present a new development in quantum mechanics/molecular mechanics (QM/MM) methods by replacing conventional MM models with data-driven many-body (MB) representations rigorously derived from high-level QM calculations. The new QM/MM approach builds on top of mutually polarizable QM/MM schemes developed for polarizable force fields with inducible dipoles and uses permutationally invariant polynomials to effectively account for quantum-mechanical contributions (e.g., exchange-repulsion and charge transfer and penetration) that are difficult to describe by classical expressions adopted by conventional MM models. Using the many-body MB-pol and MB-DFT potential energy functions for water, which include explicit two-body and three-body terms fitted to reproduce the corresponding CCSD(T) and PBE0 two-body and three-body energies for water, we demonstrate a smooth energetic transition as molecules are transferred between QM and MM regions, without the need of a transition layer. By effectively elevating the accuracy of both the MM region and the QM/MM interface to that of the QM region, the new QM/MB-MM approach achieves an accuracy comparable to that obtained with a fully QM treatment of the entire system.

14.
J Chem Phys ; 153(6): 060901, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-35287447

ABSTRACT

We present a systematic analysis of state-of-the-art polarizable and flexible water models from a many-body perspective, with a specific focus on their ability to represent the Born-Oppenheimer potential energy surface of water from the gas to the liquid phase. Using coupled cluster data in the completed basis set limit as a reference, we examine the accuracy of the polarizable models in reproducing individual many-body contributions to interaction energies and harmonic frequencies of water clusters and compare their performance with that of MB-pol, an explicit many-body model that has been shown to correctly predict the properties of water across the entire phase diagram. Based on these comparisons, we use MB-pol as a reference to analyze the ability of the polarizable models to reproduce the energy landscape of liquid water under ambient conditions. We find that, while correctly reproducing the energetics of minimum-energy structures, the polarizable models examined in this study suffer from inadequate representations of many-body effects for distorted configurations. To investigate the role played by geometry-dependent representations of 1-body charge distributions in reproducing coupled cluster data for both interaction and many-body energies, we introduce a simplified version of MB-pol that adopts fixed atomic charges and demonstrate that the new model retains the same accuracy as the original MB-pol model. Based on the analyses presented in this study, we believe that future developments of both polarizable and explicit many-body models should continue in parallel and would benefit from synergistic efforts aimed at integrating the best aspects of the two theoretical/computational frameworks.

15.
Chem Sci ; 10(35): 8211-8218, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-32133122

ABSTRACT

Despite its apparent simplicity, water displays unique behavior across the phase diagram which is strictly related to the ability of the water molecules to form dense, yet dynamic, hydrogen-bond networks that continually fluctuate in time and space. The competition between different local hydrogen-bonding environments has been hypothesized as a possible origin of the anomalous properties of liquid water. Through a systematic application of the many-body expansion of the total energy, we demonstrate that the local structure of liquid water at room temperature is determined by a delicate balance between two-body and three-body energies, which is further modulated by higher-order many-body effects. Besides providing fundamental insights into the structure of liquid water, this analysis also emphasizes that a correct representation of two-body and three-body energies requires sub-chemical accuracy that is nowadays only achieved by many-body models rigorously derived from the many-body expansion of the total energy, which thus hold great promise for shedding light on the molecular origin of the anomalous behavior of liquid water.

16.
J Phys Chem B ; 120(48): 12293-12304, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27934233

ABSTRACT

Membrane proteins, due to their roles as cell receptors and signaling mediators, make prime candidates for drug targets. The computational analysis of protein-ligand binding affinities has been widely employed as a tool in rational drug design efforts. Although efficient implicit solvent-based methods for modeling globular protein-ligand binding have been around for many years, the extension of such methods to membrane protein-ligand binding is still in its infancy. In this study, we extended the widely used Amber/MMPBSA method to model membrane protein-ligand systems, and we used it to analyze protein-ligand binding for the human purinergic platelet receptor (P2Y12R), a prominent drug target in the inhibition of platelet aggregation for the prevention of myocardial infarction and stroke. The binding affinities, computed by the Amber/MMPBSA method using standard parameters, correlate well with experiment. A detailed investigation of these parameters was conducted to assess their impact on the accuracy of the method. These analyses show the importance of properly treating the nonpolar solvation interactions and the electrostatic polarization in the binding of nucleotide agonists and non-nucleotide antagonists to P2Y12R. On the basis of the crystal structures and the experimental conditions in the binding assay, we further hypothesized that the nucleotide agonists lose their bound magnesium ion upon binding to P2Y12R, and our computational study supports this hypothesis. Ultimately, this work illustrates the value of computational analysis in the interpretation of experimental binding reactions.


Subject(s)
Purinergic P2Y Receptor Agonists/pharmacology , Receptors, Purinergic P2Y12/metabolism , Binding Sites/drug effects , Blood Platelets/drug effects , Humans , Ligands , Models, Molecular , Purinergic P2Y Receptor Agonists/chemistry , Receptors, Purinergic P2Y12/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...