Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Arthropod Borne Dis ; 13(3): 324-333, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31879671

ABSTRACT

BACKGROUND: Plasmodium falciparum is the protozoan parasite which causes malignant malaria of medical concern. Prime candidates for recombinant vaccine development are asexual stage antigens of P. falciparum, for example, merozoite surface proteins (MSP1 and MSP2) not given satisfactory results to date. In this study, the 19kDa C-terminal of MSP1, a vaccine candidate was purified in its native form in the ring stage, and its glycoproteins studied. METHODS: The study was carried out at the Biochemistry Department of Pasteur Institute of Iran in the years 2015-2016. Large scale culture of P. falciparum was performed in vitro with 80% ring stage parasitemia. Isopycnic ultracentrifugation with 36% sucrose and analytical SDS-PAGE on the supernatant and precipitate performed, and the 19kDa antigen was obtained by cutting it from strips of preparative SDS gels. Purified protein was concentrated and analyzed by SDS-PAGE and immunoblotting, using antibodies raised to recombinant C-terminal MSP1. RESULTS: The purified protein gave a single band of 19kDa antigen as shown by silver staining of SDS-PAGE and a single bond in immunoblotting. Bioinformatics also confirmed the likelihood of the presence of glycans on the antigen. CONCLUSION: The presence of N and O-glycoproteins were detected by Q proteome kit. This work was done on the ring stage, and earlier workers confirmed the presence of glycoproteins on MSP1 in the other stages. This glycosylation is present in all stages, and maybe incomplete protection elicited by recombinant MSP1 antigens is due to lack of N and O-glycoproteins.

2.
Malar Res Treat ; 2012: 381724, 2012.
Article in English | MEDLINE | ID: mdl-23365788

ABSTRACT

The initial success of any adopted anti-infective strategy to malaria is followed by a descent due to the emergence of resistance to it. The search for new drugs and drug targets is a consistent demand in this disease. Eosin B, a common laboratory dye, is reported to have good antiparasitic properties in vitro. It was studied for its antiparasitic effect in vivo on chloroquine-sensitive Plasmodium berghei murine malaria. Eosin B was administered in 2 different doses by either the oral or parenteral route, once or twice daily to mice infected with Plasmodium berghei. Both the doses of eosin B 400 mg/kg and 800 mg/kg gave better results than the controls which were 40 mg/kg chloroquine and 100 mg/kg of arteether with P < 0.005 significance. Percentage suppressive activity by Peter's test of eosin B was better, though at a higher dose than both the controls. Survival rate of mice receiving the higher dose of eosin B was longer than that of the controls. When administered twice daily, the mice were fully cured after 4 days. Eosin B seems to be a promising drug exhibiting good antimalarial effects in the murine model of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...