Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters










Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 4): 95-104, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33830074

ABSTRACT

A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Šresolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.


Subject(s)
Clostridiales/metabolism , Clostridium thermocellum/metabolism , Membrane Proteins/metabolism , Polysaccharides/metabolism , Amino Acid Sequence , Clostridiales/chemistry , Clostridiales/genetics , Clostridium thermocellum/chemistry , Clostridium thermocellum/genetics , Crystallization , Membrane Proteins/chemistry , Membrane Proteins/genetics , Polysaccharides/chemistry , Polysaccharides/genetics , Protein Structure, Secondary , Protein Structure, Tertiary
2.
Sci Adv ; 6(43)2020 10.
Article in English | MEDLINE | ID: mdl-33097546

ABSTRACT

Many important proteins undergo pH-dependent conformational changes resulting in "on-off" switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.


Subject(s)
Cellulosomes , Clostridium acetobutylicum , Bacterial Proteins/chemistry , Binding Sites , Cellulosomes/chemistry , Cellulosomes/metabolism , Clostridium acetobutylicum/metabolism , Hydrogen-Ion Concentration , Protein Binding
3.
Proteins ; 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32761961

ABSTRACT

Dihydrolipoamide dehydrogenase (DLDH) is a mitochondrial enzyme that comprises an essential component of the pyruvate dehydrogenase complex. Lines of evidence have shown that many dehydrogenases possess unrelated actions known as moonlightings in addition to their oxidoreductase activity. As part of these activities, we have demonstrated that DLDH binds TiO2 as well as produces reactive oxygen species (ROS). This ROS production capability was harnessed for cancer therapy via integrin-mediated drug-delivery of RGD-modified DLDH (DLDHRGD ), leading to apoptotic cell death. In these experiments, DLDHRGD not only accumulated in the cytosol but also migrated to the cell nuclei, suggesting a potential DNA-binding capability of this enzyme. To explore this interaction under cell-free conditions, we have analyzed DLDH binding to phage lambda (λ) DNA by gel-shift assays and analytic ultracentrifugation, showing complex formation between the two, which led to full coverage of the DNA molecule with DLDH molecules. DNA binding did not affect DLDH enzymatic activity, indicating that there are neither conformational changes nor active site hindering in DLDH upon DNA-binding. A Docking algorithm for prediction of protein-DNA complexes, Paradoc, identified a putative DNA binding site at the C-terminus of DLDH. Our finding that TiO2 -bound DLDH failed to form a complex with DNA suggests partial overlapping between the two sites. To conclude, DLDH binding to DNA presents a novel moonlight activity which may be used for DNA alkylating in cancer treatment.

4.
Proteins ; 87(11): 917-930, 2019 11.
Article in English | MEDLINE | ID: mdl-31162722

ABSTRACT

Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi-enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI ) factors that have cognate membrane-associated anti-σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure-function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14-superfamily motifs. The X-ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4 -dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3 -dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation-related genes. Structural similarity between clostridial PA14 dyads to PA14-containing proteins in yeast helped identify another crucial signature element: the calcium-binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A ) is dominant in directing the binding to the ligand in both bacteria. The two X-ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules.


Subject(s)
Bacterial Proteins/metabolism , Cellulosomes/metabolism , Clostridium/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biomass , Cellulosomes/chemistry , Cellulosomes/genetics , Clostridium/chemistry , Clostridium/genetics , Clostridium thermocellum/chemistry , Clostridium thermocellum/genetics , Clostridium thermocellum/metabolism , Crystallography, X-Ray , Models, Molecular , Promoter Regions, Genetic , Protein Conformation , Sequence Alignment
5.
Nucleic Acids Res ; 47(11): 5988-5997, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31106374

ABSTRACT

The σ70 family alternative σI factors and their cognate anti-σI factors are widespread in Clostridia and Bacilli and play a role in heat stress response, virulence, and polysaccharide sensing. Multiple σI/anti-σI factors exist in some lignocellulolytic clostridial species, specifically for regulation of components of a multienzyme complex, termed the cellulosome. The σI and anti-σI factors are unique, because the C-terminal domain of σI (SigIC) and the N-terminal inhibitory domain of anti-σI (RsgIN) lack homology to known proteins. Here, we report structure and interaction studies of a pair of σI and anti-σI factors, SigI1 and RsgI1, from the cellulosome-producing bacterium, Clostridium thermocellum. In contrast to other known anti-σ factors that have N-terminal helical structures, RsgIN has a ß-barrel structure. Unlike other anti-σ factors that bind both σ2 and σ4 domains of the σ factors, RsgIN binds SigIC specifically. Structural analysis showed that SigIC contains a positively charged surface region that recognizes the promoter -35 region, and the synergistic interactions among multiple interfacial residues result in the specificity displayed by different σI/anti-σI pairs. We suggest that the σI/anti-σI factors represent a distinctive mode of σ/anti-σ complex formation, which provides the structural basis for understanding the molecular mechanism of the intricate σI/anti-σI system.


Subject(s)
Bacterial Proteins/metabolism , Cellulosomes/metabolism , Clostridium thermocellum/genetics , Clostridium thermocellum/metabolism , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Sigma Factor/metabolism , Bacteria/metabolism , Bacterial Proteins/chemistry , DNA-Directed RNA Polymerases/chemistry , Magnetic Resonance Spectroscopy , Mutagenesis , Plasmids/metabolism , Protein Conformation , Protein Domains , Protein Structure, Secondary , Surface Plasmon Resonance
6.
J Biomed Mater Res A ; 107(3): 545-551, 2019 03.
Article in English | MEDLINE | ID: mdl-30390369

ABSTRACT

Titanium and its alloys are widely used in dental- and orthopedic implants, the outer surface of which is often oxidized to titanium dioxide (TiO2 ). To achieve efficient osseointegration with bone-forming cells, it is desirable to counter the formation of the soft fibrous tissue around the implant by creating strong and stable interactions between the implant surface and bone-forming osteoblasts. To address this challenge, a bioactive coating had to be designed. Protein adsorption to TiO2 is well known in the literature, but it is mostly characterized by weak associations, rendering less efficient implant osseointegration. We have previously demonstrated the unique conjugation between the dihydrolipoamide dehydrogenase (DLDH) protein and TiO2 surfaces, based on specific coordinative bonding via Cys-His-Glu-Asp motif residues. To enhance cell binding to DLDH and facilitate osseointegration, DLDH was bioengineered to include Arg-Gly-Asp (RGD) moieties (DLDHRGD ). Coating TiO2 disks with DLDHRGD led to improved adherence of integrin-expressing osteogenic MBA-15 to the surface of the disks. Following the enhanced adsorption, higher proliferation rates of the adherent cells, as well as faster mineralization were observed, compared to controls. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 545-551, 2019.


Subject(s)
Bone and Bones/metabolism , Dihydrolipoamide Dehydrogenase/chemistry , Implants, Experimental , Oligopeptides/chemistry , Osseointegration , Titanium/chemistry , Animals , Bone and Bones/cytology , Cell Adhesion , Cell Line , Mice
7.
Sci Rep ; 8(1): 11036, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038431

ABSTRACT

Bacteria can adjust their genetic programs via alternative σ factors to face new environmental pressures. Here, we analyzed a unique set of paralogous alternative σ factors, termed σIs, which fine-tune the regulation of one of the most intricate cellulolytic systems in nature, the bacterial cellulosome, that is involved in degradation of environmental polysaccharides. We combined bioinformatics with experiments to decipher the regulatory networks of five σIs in Clostridium thermocellum, the epitome of cellulolytic microorganisms, and one σI in Pseudobacteroides cellulosolvens which produces the cellulosomal system with the greatest known complexity. Despite high homology between different σIs, our data suggest limited cross-talk among them. Remarkably, the major cross-talk occurs within the main cellulosomal genes which harbor the same σI-dependent promoter elements, suggesting a promoter-based mechanism to guarantee the expression of relevant genes. Our findings provide insights into the mechanisms used by σIs to differentiate among their corresponding regulons, representing a comprehensive overview of the regulation of the cellulosome to date. Finally, we show the advantage of using a heterologous host system for analysis of multiple σIs, since information generated by their analysis in their natural host can be misinterpreted owing to a cascade of interactions among the different σIs.


Subject(s)
Bacterial Proteins/metabolism , Clostridium/metabolism , Sigma Factor/metabolism , Bacterial Proteins/genetics , Biomass , Clostridium/genetics , Computational Biology , Gene Expression Regulation, Bacterial/genetics , Mutagenesis, Site-Directed , Promoter Regions, Genetic/genetics
8.
Appl Environ Microbiol ; 84(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29453253

ABSTRACT

Heterologous display of enzymes on microbial cell surfaces is an extremely desirable approach, since it enables the engineered microbe to interact directly with the plant wall extracellular polysaccharide matrix. In recent years, attempts have been made to endow noncellulolytic microbes with genetically engineered cellulolytic capabilities for improved hydrolysis of lignocellulosic biomass and for advanced probiotics. Thus far, however, owing to the hurdles encountered in secreting and assembling large, intricate complexes on the bacterial cell wall, only free cellulases or relatively simple cellulosome assemblies have been introduced into live bacteria. Here, we employed the "adaptor scaffoldin" strategy to compensate for the low levels of protein displayed on the bacterial cell surface. That strategy mimics natural elaborated cellulosome architectures, thus exploiting the exponential features of their Lego-like combinatorics. Using this approach, we produced several bacterial consortia of Lactobacillus plantarum, a potent gut microbe which provides a very robust genetic framework for lignocellulosic degradation. We successfully engineered surface display of large, fully active self-assembling cellulosomal complexes containing an unprecedented number of catalytic subunits all produced in vivo by the cell consortia. Our results demonstrate that the enzyme stability and performance of the cellulosomal machinery, which are superior to those seen with the equivalent secreted free enzyme system, and the high cellulase-to-xylanase ratios proved beneficial for efficient degradation of wheat straw.IMPORTANCE The multiple benefits of lactic acid bacteria are well established in health and industry. Here we present an approach designed to extensively increase the cell surface display of proteins via successive assembly of interactive components. Our findings present a stepping stone toward proficient engineering of Lactobacillus plantarum, a widespread, environmentally important bacterium and potent microbiome member, for improved degradation of lignocellulosic biomass and advanced probiotics.


Subject(s)
Cell Membrane/metabolism , Cellulase/chemistry , Cellulase/metabolism , Cellulose/metabolism , Cellulosomes/metabolism , Lactobacillus plantarum/metabolism , Cellulase/genetics , Gastrointestinal Microbiome
9.
Microorganisms ; 5(4)2017 Nov 18.
Article in English | MEDLINE | ID: mdl-29156585

ABSTRACT

The bacterial cellulosome is an extracellular, multi-enzyme machinery, which efficiently depolymerizes plant biomass by degrading plant cell wall polysaccharides. Several cellulolytic bacteria have evolved various elaborate modular architectures of active cellulosomes. We present here a genome-wide analysis of a dozen mesophilic clostridia species, including both well-studied and yet-undescribed cellulosome-producing bacteria. We first report here, the presence of cellulosomal elements, thus expanding our knowledge regarding the prevalence of the cellulosomal paradigm in nature. We explored the genomic organization of key cellulosome components by comparing the cellulosomal gene clusters in each bacterial species, and the conserved sequence features of the specific cellulosomal modules (cohesins and dockerins), on the background of their phylogenetic relationship. Additionally, we performed comparative analyses of the species-specific repertoire of carbohydrate-degrading enzymes for each of the clostridial species, and classified each cellulosomal enzyme into a specific CAZy family, thus indicating their putative enzymatic activity (e.g., cellulases, hemicellulases, and pectinases). Our work provides, for this large group of bacteria, a broad overview of the blueprints of their multi-component cellulosomal complexes. The high similarity of their scaffoldin clusters and dockerin-based recognition residues suggests a common ancestor, and/or extensive horizontal gene transfer, and potential cross-species recognition. In addition, the sporadic spatial organization of the numerous dockerin-containing genes in several of the genomes, suggests the importance of the cellulosome paradigm in the given bacterial species. The information gained in this work may be utilized directly or developed further by genetically engineering and optimizing designer cellulosome systems for enhanced biotechnological biomass deconstruction and biofuel production.

10.
Biotechnol Biofuels ; 10: 222, 2017.
Article in English | MEDLINE | ID: mdl-28932263

ABSTRACT

BACKGROUND: Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium (Ruminiclostridium) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. RESULTS: Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. CONCLUSION: The results reported here highlight the finding that cellulosomes derived from cells grown on glucose and microcrystalline cellulose are more efficient in their action on cellulosic substrates than other cellulosome preparations. These results should be considered in the future development of C. thermocellum-based cellulolytic cocktails, designer cellulosomes, or engineering of improved strains for deconstruction of lignocellulosic biomass.

11.
Biotechnol Biofuels ; 10: 211, 2017.
Article in English | MEDLINE | ID: mdl-28912832

ABSTRACT

BACKGROUND: (Pseudo) Bacteroides cellulosolvens is an anaerobic, mesophilic, cellulolytic, cellulosome-producing clostridial bacterium capable of utilizing cellulose and cellobiose as carbon sources. Recently, we sequenced the B. cellulosolvens genome, and subsequent comprehensive bioinformatic analysis, herein reported, revealed an unprecedented number of cellulosome-related components, including 78 cohesin modules scattered among 31 scaffoldins and more than 200 dockerin-bearing ORFs. In terms of numbers, the B. cellulosolvens cellulosome system represents the most intricate, compositionally diverse cellulosome system yet known in nature. RESULTS: The organization of the B. cellulosolvens cellulosome is unique compared to previously described cellulosome systems. In contrast to all other known cellulosomes, the cohesin types are reversed for all scaffoldins i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. Many of the type II dockerin-bearing ORFs include X60 modules, which are known to stabilize type II cohesin-dockerin interactions. In the present work, we focused on revealing the architectural arrangement of cellulosome structure in this bacterium by examining numerous interactions between the various cohesin and dockerin modules. In total, we cloned and expressed 43 representative cohesins and 27 dockerins. The results revealed various possible architectures of cell-anchored and cell-free cellulosomes, which serve to assemble distinctive cellulosome types via three distinct cohesin-dockerin specificities: type I, type II, and a novel-type designated R (distinct from type III interactions, predominant in ruminococcal cellulosomes). CONCLUSIONS: The results of this study provide novel insight into the architecture and function of the most intricate and extensive cellulosomal system known today, thereby extending significantly our overall knowledge base of cellulosome systems and their components. The robust cellulosome system of B. cellulosolvens, with its unique binding specificities and reversal of cohesin-dockerin types, has served to amend our view of the cellulosome paradigm. Revealing new cellulosomal interactions and arrangements is critical for designing high-efficiency artificial cellulosomes for conversion of plant-derived cellulosic biomass towards improved production of biofuels.

12.
Biotechnol J ; 12(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28901714

ABSTRACT

Cellulose deconstruction can be achieved by three distinct enzymatic paradigms: free enzymes, multifunctional enzymes, and self-assembled, multi-enzyme complexes (cellulosomes). To study their comparative efficiency, the simple and efficient cellulolytic system of the aerobic bacterium, Thermobifida fusca, is developed as an enzymatic model. In previous studies, most of its cellulases are successfully converted to the cellulosomal mode and exhibited high cellulolytic activities, except for Cel6B, a key exoglucanase of the T. fusca enzymatic system. Here, the impact of the modular organization of Cel6B on enzymatic activity is investigated. The position of the cellulose-binding module (CBM), its family and linker segment are shown to affect activity. Surprisingly, exchange of the native family-2 CBM to family-3 generates an increase in Cel6B activity on cellulosic substrates. Conversion of Cel6B to the cellulosomal mode by fusing a cohesin to the catalytic module enables formation of divalent enzyme complexes with dockerin-bearing enzymes. The resultant pseudo-cellulosomes, containing Cel6B combined with endoglucanase Cel5A, exhibits enhanced enzymatic activity, compared to mixtures of wild-type enzymes or bifunctional enzymes, unlike similar pseudo-cellulosomes containing endoglucanase Cel6A or proccessive endoglucanase Cel9A. Insight into the different enzymatic paradigms benefits ongoing development of efficient cellulolytic systems for conversion of plant-derived biomass into valuable sugars. NOVELTY STATEMENT: The protein engineering of the modular arrangement of a key exoglucanase from a highly cellulolytic bacterium, Thermobifida fusca, served to explore and compare three major enzymatic paradigms for cellulose degradation. This approach revealed highly active chimaeric forms of the exoglucanase that act in synergy together with a potent endoglucanase in bifunctional enzymes or divalent pseudo-cellulosome-like complexes. Such engineered enzymes could be further integrated into larger enzymatic complexes, thereby providing a significant step forward towards conversion of the entire T. fusca free cellulolytic system into the cellulosomal modex and the enhanced conversion of cellulosic biomass into soluble sugars.


Subject(s)
Actinomycetales/enzymology , Cellulase/chemistry , Cellulase/metabolism , Cellulose/metabolism , Cellulosomes/enzymology , Actinomycetales/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cell Cycle Proteins , Cellulase/genetics , Chromosomal Proteins, Non-Histone , Enzyme Assays , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genetic Vectors , Hydrolysis , Recombinant Proteins , Cohesins
13.
Appl Environ Microbiol ; 83(8)2017 04 15.
Article in English | MEDLINE | ID: mdl-28159788

ABSTRACT

Cellulosomes are considered to be one of the most efficient systems for the degradation of plant cell wall polysaccharides. The central cellulosome component comprises a large, noncatalytic protein subunit called scaffoldin. Multiple saccharolytic enzymes are incorporated into the scaffoldins via specific high-affinity cohesin-dockerin interactions. Recently, the regulation of genes encoding certain cellulosomal components by multiple RNA polymerase alternative σI factors has been demonstrated in Clostridium (Ruminiclostridium) thermocellum In the present report, we provide experimental evidence demonstrating that the C. thermocellum cipA gene, which encodes the primary cellulosomal scaffoldin, is regulated by several alternative σI factors and by the vegetative σA factor. Furthermore, we show that previously suggested transcriptional start sites (TSSs) of C. thermocellum cipA are actually posttranscriptional processed sites. By using comparative bioinformatic analysis, we have also identified highly conserved σI- and σA-dependent promoters upstream of the primary scaffoldin-encoding genes of other clostridia, namely, Clostridium straminisolvens, Clostridium clariflavum, Acetivibrio cellulolyticus, and Clostridium sp. strain Bc-iso-3. Interestingly, a previously identified TSS of the primary scaffoldin CbpA gene of Clostridium cellulovorans matches the predicted σI-dependent promoter identified in the present work rather than the previously proposed σA promoter. With the exception of C. cellulovorans, both σI and σA promoters of primary scaffoldin genes are located more than 600 nucleotides upstream of the start codon, yielding long 5'-untranslated regions (5'-UTRs). Furthermore, these 5'-UTRs have highly conserved stem-loop structures located near the start codon. We propose that these large 5'-UTRs may be involved in the regulation of both the primary scaffoldin and other cellulosomal components.IMPORTANCE Cellulosome-producing bacteria are among the most effective cellulolytic microorganisms known. This group of bacteria has biotechnological potential for the production of second-generation biofuels and other biocommodities from cellulosic wastes. The efficiency of cellulose hydrolysis is due to their cellulosomes, which arrange enzymes in close proximity on the cellulosic substrate, thereby increasing synergism among the catalytic domains. The backbone of these multienzyme nanomachines is the scaffoldin subunit, which has been the subject of study for many years. However, its genetic regulation is poorly understood. Hence, from basic and applied points of view, it is imperative to unravel the regulatory mechanisms of the scaffoldin genes. The understanding of these regulatory mechanisms can help to improve the performance of the industrially relevant strains of C. thermocellum and related cellulosome-producing bacteria en route to the consolidated bioprocessing of biomass.


Subject(s)
Bacterial Proteins/genetics , Carrier Proteins/genetics , Cellulose/metabolism , Cellulosomes/metabolism , Clostridium thermocellum/genetics , Clostridium thermocellum/metabolism , Gene Expression Regulation, Bacterial , 5' Untranslated Regions , Hydrolysis , Promoter Regions, Genetic , Sigma Factor/metabolism , Transcription Initiation Site
14.
Sci Rep ; 7: 42355, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186207

ABSTRACT

Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.


Subject(s)
Bacterial Proteins/metabolism , Cellulosomes/metabolism , Protein Interaction Maps , Ruminococcus/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Cell Cycle Proteins/metabolism , Cellulose/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Models, Biological , Phylogeny , Protein Array Analysis , Cohesins
15.
Genome Announc ; 4(5)2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27688341

ABSTRACT

We and others have shown the utility of long sequence reads to improve genome assembly quality. In this study, we generated PacBio DNA sequence data to improve the assemblies of draft genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7.

16.
mBio ; 7(2): e00083, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27048796

ABSTRACT

UNLABELLED: Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities-the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes-4 xylanases and 4 cellulases-thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes. IMPORTANCE: Plant cell wall residues represent a major source of renewable biomass for the production of biofuels such as ethanol via breakdown to soluble sugars. The natural microbial degradation process, however, is inefficient for achieving cost-effective processes in the conversion of plant-derived biomass to biofuels, either from dedicated crops or human-generated cellulosic wastes. The accumulation of the latter is considered a major environmental pollutant. The development of designer cellulosome nanodevices for enhanced plant cell wall degradation thus has major impacts in the fields of environmental pollution, bioenergy production, and biotechnology in general. The findings reported in this article comprise a true breakthrough in our capacity to produce extended designer cellulosomes via synthetic biology means, thus enabling the assembly of higher-order complexes that can supersede the number of enzymes included in a single multienzyme complex.


Subject(s)
Cellulosomes/genetics , Cellulosomes/metabolism , Protein Interaction Domains and Motifs , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cellulose/metabolism , Hydrolysis , Protein Binding
17.
PLoS One ; 11(1): e0146316, 2016.
Article in English | MEDLINE | ID: mdl-26731480

ABSTRACT

The Gram-positive, anaerobic, cellulolytic, thermophile Clostridium (Ruminiclostridium) thermocellum secretes a multi-enzyme system called the cellulosome to solubilize plant cell wall polysaccharides. During the saccharolytic process, the enzymatic composition of the cellulosome is modulated according to the type of polysaccharide(s) present in the environment. C. thermocellum has a set of eight alternative RNA polymerase sigma (σ) factors that are activated in response to extracellular polysaccharides and share sequence similarity to the Bacillus subtilis σI factor. The aim of the present work was to demonstrate whether individual C. thermocellum σI-like factors regulate specific cellulosomal genes, focusing on C. thermocellum σI6 and σI3 factors. To search for putative σI6- and σI3-dependent promoters, bioinformatic analysis of the upstream regions of the cellulosomal genes was performed. Because of the limited genetic tools available for C. thermocellum, the functionality of the predicted σI6- and σI3-dependent promoters was studied in B. subtilis as a heterologous host. This system enabled observation of the activation of 10 predicted σI6-dependent promoters associated with the C. thermocellum genes: sigI6 (itself, Clo1313_2778), xyn11B (Clo1313_0522), xyn10D (Clo1313_0177), xyn10Z (Clo1313_2635), xyn10Y (Clo1313_1305), cel9V (Clo1313_0349), cseP (Clo1313_2188), sigI1 (Clo1313_2174), cipA (Clo1313_0627), and rsgI5 (Clo1313_0985). Additionally, we observed the activation of 4 predicted σI3-dependent promoters associated with the C. thermocellum genes: sigI3 (itself, Clo1313_1911), pl11 (Clo1313_1983), ce12 (Clo1313_0693) and cipA. Our results suggest possible regulons of σI6 and σI3 in C. thermocellum, as well as the σI6 and σI3 promoter consensus sequences. The proposed -35 and -10 promoter consensus elements of σI6 are CNNAAA and CGAA, respectively. Additionally, a less conserved CGA sequence next to the C in the -35 element and a highly conserved AT sequence three bases downstream of the -10 element were also identified as important nucleotides for promoter recognition. Regarding σI3, the proposed -35 and -10 promoter consensus elements are CCCYYAAA and CGWA, respectively. The present study provides new clues for understanding these recently discovered alternative σI factors.


Subject(s)
Bacillus subtilis/metabolism , Biomass , Clostridium thermocellum/metabolism , Regulon/physiology , Sigma Factor/metabolism , Bacillus subtilis/genetics , Cellulosomes/genetics , Cellulosomes/metabolism , Clostridium thermocellum/genetics
18.
Genome Announc ; 3(5)2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26404597

ABSTRACT

We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, wherein the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions, whereas enzymes are integrated via type-II interactions.

19.
PeerJ ; 3: e1126, 2015.
Article in English | MEDLINE | ID: mdl-26401442

ABSTRACT

Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60-70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes.

20.
FEBS Lett ; 589(20 Pt B): 3133-40, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26320414

ABSTRACT

Clostridium thermocellum efficiently degrades crystalline cellulose by a high molecular weight protein complex, the cellulosome. The bacterium regulates its cellulosomal genes using a unique extracellular biomass-sensing mechanism that involves alternative sigma factors and extracellular carbohydrate-binding modules attached to intracellular anti-sigma domains. In this study, we identified three cellulosomal xylanase genes that are regulated by the σ(I6)/RsgI6 system by utilizing sigI6 and rsgI6 knockout mutants together with primer extension analysis. Our results indicate that cellulosomal genes are expressed from both alternative σ(I6) and σ(A) vegetative promoters.


Subject(s)
Bacterial Proteins/genetics , Cellulosomes/genetics , Clostridium thermocellum/genetics , Sigma Factor/genetics , Xylosidases/genetics , Bacterial Proteins/metabolism , Base Sequence , Cellulose/metabolism , Cellulosomes/enzymology , Clostridium thermocellum/enzymology , Clostridium thermocellum/metabolism , Fermentation , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Mutation , Panicum/metabolism , Panicum/microbiology , Polysaccharides/metabolism , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sigma Factor/metabolism , Transcription Initiation Site , Xylans/metabolism , Xylosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...