Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 16(5): 787-793, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33877812

ABSTRACT

Chemical synthesis has been described as a central science. Its practice provides access to the chemical structures of known and/or designed function. In particular, human health is greatly impacted by synthesis that enables advancements in both basic science discoveries in chemical biology as well as translational research that can lead to new therapeutics. To support the chemical synthesis needs of investigators across campus, the Vanderbilt Institute of Chemical Biology established a chemical synthesis core as part of its foundation in 2008. Provided in this Review are examples of synthetic products, known and designed, produced in the core over the past 10 years.


Subject(s)
Chemistry Techniques, Synthetic/methods , Indicators and Reagents/chemical synthesis , Pharmaceutical Preparations/chemical synthesis , Animals , Biological Products/chemical synthesis , Biophysical Phenomena , Contrast Media/chemical synthesis , Humans , Positron Emission Tomography Computed Tomography , Research , Retrospective Studies , Stereoisomerism
2.
Bioorg Med Chem Lett ; 41: 127974, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33771585

ABSTRACT

Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Ethers/pharmacology , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Aniline Compounds/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Ethers/chemistry , Humans , L-Lactate Dehydrogenase/chemistry
3.
Org Lett ; 14(20): 5207-9, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23030527

ABSTRACT

Bacillithiol (BSH) has been prepared on the gram scale from the inexpensive starting material, D-glucosamine hydrochloride, in 11 steps and 8-9% overall yield. The BSH was used to survey the substrate and metal-ion selectivity of FosB enzymes from four Gram-positive microorganisms associated with the deactivation of the antibiotic fosfomycin. The in vitro results indicate that the preferred thiol substrate and metal ion for the FosB from Staphylococcus aureus are BSH and Ni(II), respectively. However, the metal-ion selectivity is less distinct with FosB from Bacillus subtilis, Bacillus anthracis, or Bacillus cereus.


Subject(s)
Biocatalysis , Cysteine/analogs & derivatives , Glucosamine/analogs & derivatives , Proto-Oncogene Proteins c-fos/metabolism , Staphylococcus aureus/metabolism , Bacillus/metabolism , Cysteine/chemical synthesis , Cysteine/metabolism , Fosfomycin/chemistry , Fosfomycin/metabolism , Glucosamine/chemical synthesis , Glucosamine/metabolism , Molecular Structure , Substrate Specificity
4.
Bioorg Med Chem Lett ; 22(2): 1044-8, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22197142

ABSTRACT

This Letter describes the continued optimization of an MLPCN probe molecule (ML012) through an iterative parallel synthesis approach. After exploring extensive modifications throughout the parent structure, we arrived at a more highly M(1)-selective antagonist, compound 13l (VU0415248). Muscarinic subtype selectivity across all five human and rat receptors for 13l, along with rat selectivity for the lead compound (ML012), is presented.


Subject(s)
Molecular Probes/pharmacology , Quinolines/pharmacology , Receptor, Muscarinic M1/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...