Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383922

ABSTRACT

OBJECTIVES: Severity of degenerative scoliosis (DS) is assessed by measuring the Cobb angle on anteroposterior radiographs. However, MRI images are often available to study the degenerative spine. This retrospective study aims to develop and evaluate the reliability of a novel automatic method that measures coronal Cobb angles on lumbar MRI in DS patients. MATERIALS AND METHODS: Vertebrae and intervertebral discs were automatically segmented using a 3D AI algorithm, trained on 447 lumbar MRI series. The segmentations were used to calculate all possible angles between the vertebral endplates, with the largest being the Cobb angle. The results were validated with 50 high-resolution sagittal lumbar MRI scans of DS patients, in which three experienced readers measured the Cobb angle. Reliability was determined using the intraclass correlation coefficient (ICC). RESULTS: The ICCs between the readers ranged from 0.90 (95% CI 0.83-0.94) to 0.93 (95% CI 0.88-0.96). The ICC between the maximum angle found by the algorithm and the average manually measured Cobb angles was 0.83 (95% CI 0.71-0.90). In 9 out of the 50 cases (18%), all readers agreed on both vertebral levels for Cobb angle measurement. When using the algorithm to extract the angles at the vertebral levels chosen by the readers, the ICCs ranged from 0.92 (95% CI 0.87-0.96) to 0.97 (95% CI 0.94-0.98). CONCLUSION: The Cobb angle can be accurately measured on MRI using the newly developed algorithm in patients with DS. The readers failed to consistently choose the same vertebral level for Cobb angle measurement, whereas the automatic approach ensures the maximum angle is consistently measured. CLINICAL RELEVANCE STATEMENT: Our AI-based algorithm offers reliable Cobb angle measurement on routine MRI for degenerative scoliosis patients, potentially reducing the reliance on conventional radiographs, ensuring consistent assessments, and therefore improving patient care. KEY POINTS: • While often available, MRI images are rarely utilized to determine the severity of degenerative scoliosis. • The presented MRI Cobb angle algorithm is more reliable than humans in patients with degenerative scoliosis. • Radiographic imaging for Cobb angle measurements is mitigated when lumbar MRI images are available.

2.
World J Emerg Surg ; 16(1): 8, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33639985

ABSTRACT

BACKGROUND: Non-operative management (NOM) is generally accepted as a treatment method of traumatic paediatric splenic rupture. However, considerable variations in management exist. This study analyses local trends in aetiology and management of paediatric splenic injuries and evaluates the implementation of the guidelines proposed by the American Paediatric Surgical Association (APSA) in a level 1 trauma centre. METHODS: The charts of paediatric patients with blunt splenic injury (BSI) who were admitted or transferred to a level 1 trauma centre between 2003 and 2020 were retrospectively assessed. Information pertaining to demographics, mechanism of injury, injury description, associated injuries, intervention and outcomes were analysed and compared to international literature. RESULTS: There were 130 patients with BSI identified (63.1% male), with a mean age of 11.3 ± 4.0 and a mean Injury Severity Score (ISS) of 21.6 ± 13.7. Bicycle accidents were the most common trauma mechanism (23.1%). Sixty-four percent were multi-trauma patients, 25% received blood transfusions, and 31% were haemodynamically unstable. Mean injury grade was 3.0, with 30% of patients having a high-grade injury. In total, 75% of patients underwent NOM with a 100% efficacy rate. Total splenectomy rate was 6.2%. Four patients died due to brain damage. Patients with a high-grade BSI (grades IV-V) had a significantly higher ISS and longer bedrest and more often presented with an active blush on computed tomography (CT) scans than patients with a low-grade BSI (grades I-III). Non-operative management was mainly the choice of treatment in both groups (76.6% and 79.5%, respectively). Haemodynamic instability was a predictor for operative management (OM) (p = 0.001). Predictors for a longer length of stay (LOS) included concomitant injuries, haemodynamic instability and OM (all p < 0.02). Interobserver agreement in the grading of BSI is moderate, with a Cohens Kappa coefficient of 0.493. CONCLUSION: Non-operative management has proven to be a realistic management approach in both low- and high-grade splenic injuries. Consideration for operative management should be based on haemodynamic instability. Compared to the anticipated length of bedrest and hospital stay outlined in the APSA guidelines, the Netherlands can reduce the length of bedrest and hospital stay through their non-operative management. LEVEL OF EVIDENCE: Therapeutic study, level III.


Subject(s)
Spleen/injuries , Wounds, Nonpenetrating/therapy , Child , Female , Humans , Injury Severity Score , Male , Netherlands/epidemiology , Retrospective Studies , Trauma Centers , Wounds, Nonpenetrating/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...