Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(9): R433-R439, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35537398

ABSTRACT

Nitrate is an important source of inorganic nitrogen. Nitrate modulates many plant metabolic, physiological, and developmental processes. This minireview highlights recent findings on the intricate molecular wiring that allows plants to adapt to environmental nitrate conditions. We focus on the role of regulatory pathways and their components - transporters, receptors, second messengers, kinases, and transcription factors - in mediating plant metabolic and developmental responses to nitrate. Work is still needed to identify missing components of the nitrate signaling pathway and their interplay with known and well-characterized master regulators and to validate their molecular interactions to explain the complexity of phenotypical responses to nitrate. Understanding how plants perceive nitrate and transduce it into responses at the molecular level is crucial to optimize nitrogen-use efficiency, improve crop yield and mitigate the adverse environmental impacts of fertilizer overuse in a changing world.


Subject(s)
Nitrates , Plants , Nitrogen/metabolism , Plant Physiological Phenomena , Plants/genetics , Plants/metabolism , Transcription Factors/metabolism
2.
Plant Physiol ; 187(4): 2451-2468, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34599589

ABSTRACT

Plant glutathione S-transferases (GSTs) are glutathione-dependent enzymes with versatile functions, mainly related to detoxification of electrophilic xenobiotics and peroxides. The Arabidopsis (Arabidopsis thaliana) genome codes for 53 GSTs, divided into seven subclasses; however, understanding of their precise functions is limited. A recent study showed that class II TGA transcription factors TGA2, TGA5, and TGA6 are essential for tolerance of UV-B-induced oxidative stress and that this tolerance is associated with an antioxidative function of cytosolic tau-GSTs (GSTUs). Specifically, TGA2 controls the expression of several GSTUs under UV-B light, and constitutive expression of GSTU7 in the tga256 triple mutant is sufficient to revert the UV-B-susceptible phenotype of tga256. To further study the function of GSTU7, we characterized its role in mitigation of oxidative damage caused by the herbicide methyl viologen (MV). Under non-stress conditions, gstu7 null mutants were smaller than wild-type (WT) plants and delayed in the onset of the MV-induced antioxidative response, which led to accumulation of hydrogen peroxide and diminished seedling survival. Complementation of gstu7 by constitutive expression of GSTU7 rescued these phenotypes. Furthermore, live monitoring of the glutathione redox potential in intact cells with the fluorescent probe Grx1-roGFP2 revealed that GSTU7 overexpression completely abolished the MV-induced oxidation of the cytosolic glutathione buffer compared with WT plants. GSTU7 acted as a glutathione peroxidase able to complement the lack of peroxidase-type GSTs in yeast. Together, these findings show that GSTU7 is crucial in the antioxidative response by limiting oxidative damage and thus contributes to oxidative stress resistance in the cell.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Glutathione Transferase/genetics , Herbicides/adverse effects , Oxidative Stress , Paraquat/adverse effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Glutathione Transferase/metabolism
3.
J Exp Bot ; 72(5): 1891-1905, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33188435

ABSTRACT

Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oxidative Stress , Transcription Factors , Ultraviolet Rays , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Sci Rep ; 10(1): 16608, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024174

ABSTRACT

The technique RT-qPCR for viral RNA detection is the current worldwide strategy used for early detection of the novel coronavirus SARS-CoV-2. RNA extraction is a key pre-analytical step in RT-qPCR, often achieved using commercial kits. However, the magnitude of the COVID-19 pandemic is causing disruptions to the global supply chains used by many diagnostic laboratories to procure the commercial kits required for RNA extraction. Shortage in these essential reagents is even more acute in developing countries with no means to produce kits locally. We sought to find an alternative procedure to replace commercial kits using common reagents found in molecular biology laboratories. Here we report a method for RNA extraction that takes about 40 min to complete ten samples, and is not more laborious than current commercial RNA extraction kits. We demonstrate that this method can be used to process nasopharyngeal swab samples and yields RT-qPCR results comparable to those obtained with commercial kits. Most importantly, this procedure can be easily implemented in any molecular diagnostic laboratory. Frequent testing is crucial for individual patient management as well as for public health decision making in this pandemic. Implementation of this method could maintain crucial testing going despite commercial kit shortages.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , COVID-19 , Coronavirus Infections/virology , Diagnostic Tests, Routine , Hot Temperature , Humans , Hydrogen-Ion Concentration , Indicators and Reagents , Pandemics , Pneumonia, Viral/virology , Reagent Kits, Diagnostic/supply & distribution , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...