Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(21): 215201, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856280

ABSTRACT

We investigate the propagation of Alfvén waves in the solar chromosphere, distinguishing between upward and downward propagating waves. We find clear evidence for the reflection of waves in the chromosphere and differences in propagation between cases with waves interpreted to be resonant or nonresonant with the overlying coronal structures. This establishes the wave connection to coronal element abundance anomalies through the action of the wave ponderomotive force on the chromospheric plasma, which interacts with chromospheric ions but not neutrals, thereby providing a novel mechanism of ion-neutral separation. This is seen as a "first ionization potential effect" when this plasma is lifted into the corona, with implications elsewhere on the Sun for the origin of the slow speed solar wind and its elemental composition.

2.
Astrophys J ; 895(1)2020 May 20.
Article in English | MEDLINE | ID: mdl-32699430

ABSTRACT

We present an examination of the first ionization potential (FIP) fractionation scenario, invoking the ponderomotive force in the chromosphere and its implications for the source(s) of slow-speed solar winds by using observations from The Advanced Composition Explorer (ACE). Following a recent conjecture that the abundance enhancements of intermediate FIP elements, S, P, and C, in slow solar winds can be explained by the release of plasma fractionated on open fields, though from regions of stronger magnetic field than usually associated with fast solar wind source regions, we identify a period in 2008 containing four solar rotation cycles that show repeated pattern of sulfur abundance enhancement corresponding to a decrease in solar wind speed. We identify the source regions of these slow winds in global magnetic field models, and find that they lie at the boundaries between a coronal hole and its adjacent active region, with origins in both closed and open initial field configurations. Based on magnetic field extrapolations, we model the fractionation and compare our results with element abundances measured by ACE to estimate the solar wind contributions from open and closed fields, and to highlight potentially useful directions for further work.

3.
Astrophys J ; 879(2): 124, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-32690977

ABSTRACT

We examine the different element abundances exhibited by the closed loop solar corona and the slow speed solar wind. Both are subject to the first ionization potential (FIP) effect, the enhancement in coronal abundance of elements with FIP below 10 eV (e.g., Mg, Si, Fe) with respect to high-FIP elements (e.g., O, Ne, Ar), but with subtle differences. Intermediate elements, S, P, and C, with FIP just above 10 eV, behave as high-FIP elements in closed loops, but are fractionated more like low-FIP elements in the solar wind. On the basis of FIP fractionation by the ponderomotive force in the chromosphere, we discuss fractionation scenarios where this difference might originate. Fractionation low in the chromosphere where hydrogen is neutral enhances the S, P, and C abundances. This arises with nonresonant waves, which are ubiquitous in open field regions, and is also stronger with torsional Alfvén waves, as opposed to shear (i.e., planar) waves. We discuss the bearing these findings have on models of interchange reconnection as the source of the slow speed solar wind. The outflowing solar wind must ultimately be a mixture of the plasma in the originally open and closed fields, and the proportions and degree of mixing should depend on details of the reconnection process. We also describe novel diagnostics in ultraviolet and extreme ultraviolet spectroscopy now available with these new insights, with the prospect of investigating slow speed solar wind origins and the contribution of interchange reconnection by remote sensing.

4.
Astrophys J Lett ; 851(No 1)2017 Dec 10.
Article in English | MEDLINE | ID: mdl-29657703

ABSTRACT

We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples.

5.
Nature ; 506(7488): 298-9, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24553234
6.
Science ; 329(5999): 1604-5, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20929831
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 057402, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600801

ABSTRACT

We give an analytic treatment of radiative cooling behind radiative shocks following solutions given by Chevalier and Imamura. We demonstrate that within the approximation of a steady state radiative shock, the radiative cooling laws Lambda is proportional to Talpha that give rise to the oscillatory instability modeled by Chevalier and Imamura in gamma=5/3 cooling gas are stable to the dynamical thin-shell overstability in this gas, and vice versa. We also show that the fundamental features of the dynamical overstability observed by Grun et al. can also be understood on these bases.

8.
Phys Rev Lett ; 89(12): 125002, 2002 Sep 16.
Article in English | MEDLINE | ID: mdl-12225089

ABSTRACT

Atomic-physics calculations of radiative cooling are used to develop criteria for the overstability of radiating shocks. Our calculations explain the measurement of shock overstability by Grun et al. [Phys. Rev. Lett. 66, 2738 (1991)]] and explain why the overstability was not observed in other experiments. The methodology described here can be especially useful in astrophysical situations where the relevant properties leading to an overstability can be measured spectroscopically, but the effective adiabatic index is harder to determine.

SELECTION OF CITATIONS
SEARCH DETAIL
...