Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Neurobiol ; 47: 58-64, 2017 12.
Article in English | MEDLINE | ID: mdl-28988011

ABSTRACT

Glia adopt remarkable shapes that are tightly coordinated with the morphologies of their neuronal partners. To achieve these precise shapes, glia and neurons exhibit coordinated morphological changes on the time scale of minutes and on size scales ranging from nanometers to hundreds of microns. Here, we review recent studies that reveal the highly dynamic, localized morphological changes of mammalian neuron-glia contacts. We then explore the power of Drosophila and C. elegans models to study coordinated changes at defined neuron-glia contacts, highlighting the use of innovative genetic and imaging tools to uncover the molecular mechanisms responsible for coordinated morphogenesis of neurons and glia.


Subject(s)
Morphogenesis , Neuroglia/cytology , Neurons/cytology , Animals , Caenorhabditis elegans , Drosophila
2.
Proc Natl Acad Sci U S A ; 111(47): E5096-104, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25385629

ABSTRACT

Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.


Subject(s)
Bacteria/classification , Digestion , Feeding Behavior , Gills/microbiology , Mollusca/metabolism , Wood , Animals , Metagenome , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...