Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 104(17): 7313-7329, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32651598

ABSTRACT

Bacterial inclusion bodies (IBs) have long been considered as inactive, unfolded waste material produced by heterologous overexpression of recombinant genes. In industrial applications, they are occasionally used as an alternative in cases where a protein cannot be expressed in soluble form and in high enough amounts. Then, however, refolding approaches are needed to transform inactive IBs into active soluble protein. While anecdotal reports about IBs themselves showing catalytic functionality/activity (CatIB) are found throughout literature, only recently, the use of protein engineering methods has facilitated the on-demand production of CatIBs. CatIB formation is induced usually by fusing short peptide tags or aggregation-inducing protein domains to a target protein. The resulting proteinaceous particles formed by heterologous expression of the respective genes can be regarded as a biologically produced bionanomaterial or, if enzymes are used as target protein, carrier-free enzyme immobilizates. In the present contribution, we review general concepts important for CatIB production, processing, and application. KEY POINTS: • Catalytically active inclusion bodies (CatIBs) are promising bionanomaterials. • Potential applications in biocatalysis, synthetic chemistry, and biotechnology. • CatIB formation represents a generic approach for enzyme immobilization. • CatIB formation efficiency depends on construct design and expression conditions.


Subject(s)
Escherichia coli , Inclusion Bodies , Biocatalysis , Biotechnology , Escherichia coli/genetics , Inclusion Bodies/metabolism , Protein Engineering , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
J Biosci Bioeng ; 129(6): 730-740, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32143998

ABSTRACT

During heterologous protein production with Escherichia coli, the formation of inclusion bodies (IBs) is often a major drawback as these aggregated proteins are usually inactive. However, different strategies for the generation of IBs consisting of catalytically active proteins have recently been described. In this study, the archaeal tetrameric coiled-coil domain of the cell-surface protein tetrabrachion was fused to a target reporter protein to produce fluorescent IBs (FIBs). As the cultivation conditions severely influence IB formation, the entire cultivation process resulting in the production of FIBs were thoroughly studied. First, the cultivation process was scaled down based on the maximum oxygen transfer capacity, combining online monitoring technologies for shake flasks and microtiter plates with offline sampling. The evaluation of culture conditions in complex terrific broth autoinduction medium showed strong oxygen limitation and leaky expression. Furthermore, strong acetate formation and pH changes from 6.5 to 8.8 led to sub-optimal cultivation conditions. However, in minimal Wilms-MOPS autoinduction medium, defined culture conditions and a tightly controlled expression were achieved. The production of FIBs is strongly influenced by the induction strength. Increasing induction strengths result in lower total amounts of functional protein. However, the amount of functional FIBs increases. Furthermore, to prevent the formation of conventional inactive IBs, a temperature shift from 37 °C to 15 °C is crucial to generate FIBs. Finally, the gained insights were transferred to a stirred tank reactor batch fermentation. Hereby, 12 g/L FIBs were produced, making up 43 % (w/w) of the total generated biomass.


Subject(s)
Escherichia coli/metabolism , Inclusion Bodies/metabolism , Biomass , Culture Media/chemistry , Escherichia coli/genetics , Fermentation , Inclusion Bodies/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Oxygen/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Microb Cell Fact ; 18(1): 78, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31053124

ABSTRACT

BACKGROUND: Production of 2,3-butanediol from renewable resources is a promising measure to decrease the consumption of fossil resources in the chemical industry. One of the most influential parameters on biotechnological 2,3-butanediol production is the oxygen availability during the cultivation. As 2,3-butanediol is produced under microaerobic process conditions, a well-controlled oxygen supply is the key parameter to control biomass formation and 2,3-butanediol production. As biomass is on the one hand not the final product, but on the other hand the essential biocatalyst, the optimal compromise between biomass formation and 2,3-butanediol production has to be defined. RESULTS: A shake flask methodology is presented to evaluate the effects of oxygen availability on 2,3-butanediol production with Bacillus licheniformis DSM 8785 by variation of the filling volume. A defined two-stage cultivation strategy was developed to investigate the metabolic response to different defined maximum oxygen transfer capacities at equal initial growth conditions. The respiratory quotient was measured online to determine the point of glucose depletion, as 2,3-butanediol is consumed afterwards. Based on this strategy, comparable results to stirred tank reactors were achieved. The highest space-time yield (1.3 g/L/h) and a 2,3-butanediol concentration of 68 g/L combined with low acetoin concentrations and avoided glycerol formation were achieved at a maximum oxygen transfer capacity of 13 mmol/L/h. The highest overall 2,3-butanediol concentration of 78 g/L was observed at a maximum oxygen transfer capacity of 4 mmol/L/h. CONCLUSIONS: The presented shake flask approach reduces the experimental effort and costs providing a fast and reliable methodology to investigate the effects of oxygen availability. This can be applied especially on product and by-product formation under microaerobic conditions. Utilization of the maximum oxygen transfer capacity as measure for the oxygen availability allows for an easy adaption to other bioreactor setups and scales.


Subject(s)
Bacillus licheniformis/growth & development , Bacillus licheniformis/metabolism , Batch Cell Culture Techniques/methods , Butylene Glycols/metabolism , Oxygen/metabolism , Bioreactors , Fermentation , Glucose/metabolism
4.
ACS Synth Biol ; 7(9): 2282-2295, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30053372

ABSTRACT

In nature, enzymatic reaction cascades, i.e., realized in metabolic networks, operate with unprecedented efficacy, with the reactions often being spatially and temporally orchestrated. The principle of "learning from nature" has in recent years inspired the setup of synthetic reaction cascades combining biocatalytic reaction steps to artificial cascades. Hereby, the spatial organization of multiple enzymes, e.g., by coimmobilization, remains a challenging task, as currently no generic principles are available that work for every enzyme. We here present a tunable, genetically programmed coimmobilization strategy that relies on the fusion of a coiled-coil domain as aggregation inducing-tag, resulting in the formation of catalytically active inclusion body coimmobilizates (Co-CatIBs). Coexpression and coimmobilization was proven using two fluorescent proteins, and the strategy was subsequently extended to two enzymes, which enabled the realization of an integrated enzymatic two-step cascade for the production of (1 R,2 R)-1-phenylpropane-1,2-diol (PPD), a precursor of the calicum channel blocker diltiazem. In particular, the easy production and preparation of Co-CatIBs, readily yielding a biologically produced enzyme immobilizate renders the here presented strategy an interesting alternative to existing cascade immobilization techniques.


Subject(s)
Enzymes, Immobilized/metabolism , Inclusion Bodies/metabolism , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Aldehyde-Lyases/chemistry , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Biocatalysis , Chromatography, High Pressure Liquid , Enzymes, Immobilized/chemistry , Escherichia coli/metabolism , Propanols/analysis , Propanols/chemistry , Propanols/metabolism , Pseudomonas fluorescens/enzymology , Ralstonia/enzymology , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...