Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Appl Physiol (1985) ; 128(2): 309-323, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31774357

ABSTRACT

To facilitate computational toxicology, we developed an approach for generating high-resolution lung-anatomy and particle-deposition mouse models. Major processing steps of our method include mouse preparation, serial block-face cryomicrotome imaging, and highly automated image analysis for generating three-dimensional (3D) mesh-based models and volume-based models of lung anatomy (airways, lobes, sublobes, and near-acini structures) that are linked to local particle-deposition measurements. Analysis resulted in 34 mouse models covering 4 different mouse strains (B6C3F1: 8, BALB/C: 11, C57Bl/6: 8, and CD-1: 7) as well as both sexes (16 male and 18 female) and different particle sizes [2 µm (n = 15), 1 µm (n = 16), and 0.5 µm (n = 3)]. On average, resulting mouse airway models had 1,616.9 ± 298.1 segments, a centerline length of 597.6 ± 59.8 mm, and 1,968.9 ± 296.3 outlet regions. In addition to 3D geometric lung models, matching detailed relative particle-deposition measurements are provided. All data sets are available online in the lapdMouse archive for download. The presented approach enables linking relative particle deposition to anatomical structures like airways. This will in turn improve the understanding of site-specific airflows and how they affect drug, environmental, or biological aerosol deposition.NEW & NOTEWORTHY Computer simulations of particle deposition in mouse lungs play an important role in computational toxicology. Until now, a limiting factor was the lack of high-resolution mouse lung models and measured local particle-deposition information, which are required for developing accurate modeling approaches (e.g., computational fluid dynamics). With the developed imaging and analysis approach, we address this issue and provide all of the raw and processed data in a publicly accessible repository.


Subject(s)
Administration, Inhalation , Aerosols , Lung/anatomy & histology , Models, Biological , Animals , Computer Simulation , Female , Hydrodynamics , Image Processing, Computer-Assisted , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Particle Size
2.
PLoS One ; 8(3): e57179, 2013.
Article in English | MEDLINE | ID: mdl-23520463

ABSTRACT

In the current study, we used a canine model of radiation-induced lung injury to test the effect of a single i.v. infusion of 10×10(6)/kg of marrow fibroblasts on the progression of damage following 15 Gy exposure to the right lung. The fibroblasts, designated DS1 cells, are a cloned population of immortalized cells isolated from a primary culture of marrow stromal cells. DS1 cells were infused at week 5 post-irradiation when lung damage was evident by imaging with high-resolution computed tomography (CT). At 13 weeks post-irradiation we found that 4 out of 5 dogs receiving DS1 cells had significantly improved pulmonary function compared to 0 out of 5 control dogs (p = 0.047, Fisher's Exact). Pulmonary function was measured as the single breath diffusion capacity-hematocrit (DLCO-Hct), the total inspiratory capacity (IC), and the total lung capacity (TLC), which differed significantly between control and DS1-treated dogs; p = 0.002, p = 0.005, and p = 0.004, respectively. The DS1-treated dogs also had less pneumonitis detected by CT imaging and an increased number of TTF-1 (thyroid transcription factor 1, NKX2-1) positive cells in the bronchioli and alveoli compared to control dogs. Endothelial-like progenitor cells (ELC) of host origin, detected by colony assays, were found in peripheral blood after DS1 cell infusion. ELC numbers peaked one day after infusion, and were not detectable by 7 days. These data suggest that infusion of marrow fibroblasts stimulates mobilization of ELC, which is associated with a reduction in otherwise progressive radiation-induced lung injury. We hypothesize that these two observations are related, specifically that circulating ELC contribute to increased angiogenesis, which facilitates endogenous lung repair.


Subject(s)
Bone Marrow Cells , Bronchioles/injuries , Cell Transplantation , Fibroblasts/transplantation , Lung Diseases/therapy , Pulmonary Alveoli/injuries , Radiation Injuries, Experimental/therapy , Animals , Bronchioles/pathology , Cell Line, Transformed , Dogs , Female , Lung Diseases/etiology , Lung Diseases/pathology , Male , Pulmonary Alveoli/pathology , Radiation Injuries, Experimental/pathology , Stromal Cells/transplantation , Time Factors
3.
Pulm Circ ; 2(1): 67-74, 2012.
Article in English | MEDLINE | ID: mdl-22558522

ABSTRACT

We aimed to investigate the role of endothelin-mediated vasoconstriction following acute pulmonary thromboembolism (APTE). Thirteen anesthetized piglets (~25 kg) were ventilated with 0 PEEP. Cardiac output (Qt) and wedge pressure (Pw) were measured by a Swan Ganz catheter, along with arterial and venous blood gases. APTE was induced by autologous blood clots (~0.8 g/kg, 12-16 pieces) via a jugular venous catheter at time = 0 minutes until the mean pulmonary arterial pressure (Ppa) was about 2.5 times the baseline at 30 minutes. Eight control animals (Group 1) received only normal saline afterward, while the remaining five (Group 2) received at time = 40-minute saline plus Tezosentan, a nonspecific endothelin antagonist. The drug was initially given as an intravenous bolus (10 mg/kg), followed by an infusion (2 mg/min) until the end of the experiment at 2 hours. Hemodynamic data were measured before APTE and then at 30-minute intervals. Pulmonary vascular resistance index (PVRI) was calculated as (Ppa-Pw)/CI, where CI was cardiac index or Qt/W (body weight). Fluorescent microspheres (FMS) were used to mark regional blood flows and ventilation for cluster analysis. PVRI acutely increased within minutes and remained high despite some recovery over time. With Tezosentan treatment, the results showed that endothelin-mediated vasoconstriction persisted significantly up to 2 hours and accounted for about 25% of the increase in PVRI while clot obstruction accounted for the remaining 75%. CI remained relatively constant throughout. Tezosentan also affected PVRI indirectly by mitigating the shift of regional blood flow back to the embolized areas over time, possibly by attenuating vasoconstriction in the nonembolized areas. We conclude that following APTE, although the increased PVRI is mostly due to mechanical embolic obstruction, secondary factors such as vasoconstriction and pattern of regional blood flow over time also play important roles.

4.
Crit Care Med ; 39(3): 527-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21187747

ABSTRACT

OBJECTIVES: To adapt an animal model of acute lung injury for use as a standard protocol for a screening initial evaluation of limited function, or "surge," ventilators for use in mass casualty scenarios. DESIGN: Prospective, experimental animal study. SETTING: University research laboratory. SUBJECTS: Twelve adult pigs. INTERVENTIONS: Twelve spontaneously breathing pigs (six in each group) were subjected to acute lung injury/acute respiratory distress syndrome via pulmonary artery infusion of oleic acid. After development of respiratory failure, animals were mechanically ventilated with a limited-function ventilator (simplified automatic ventilator [SAVe] I or II; Automedx, Germantown, MD) for 1 hr or until the ventilator could not support the animal. The limited-function ventilator was then exchanged for a full-function ventilator (Servo 900C; Siemens-Elema, Solna, Sweden). MEASUREMENTS AND MAIN RESULTS: Reliable and reproducible levels of acute lung injury/acute respiratory distress syndrome were induced. The SAVe I was unable to adequately oxygenate five animals with Pao2 (52.0±11.1 torr) compared to the Servo (106.0±25.6 torr; p=.002). The SAVe II was able to oxygenate and ventilate all six animals for 1 hr with no difference in Pao2 (141.8±169.3 torr) compared to the Servo (158.3±167.7 torr). CONCLUSIONS: We describe a novel in vivo model of acute lung injury/acute respiratory distress syndrome that can be used to initially screen limited-function ventilators considered for mass respiratory failure stockpiles and that is intended to be combined with additional studies to definitively assess appropriateness for mass respiratory failure. Specifically, during this study we demonstrate that the SAVe I ventilator is unable to provide sufficient gas exchange, whereas the SAVe II, with several more functions, was able to support the same level of hypoxemic respiratory failure secondary to acute lung injury/acute respiratory distress syndrome for 1 hr.


Subject(s)
Acute Lung Injury/therapy , Disease Models, Animal , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Swine Diseases/therapy , Acute Lung Injury/physiopathology , Animals , Blood Gas Analysis , Blood Pressure/physiology , Positive-Pressure Respiration , Respiration, Artificial/instrumentation , Respiratory Distress Syndrome/physiopathology , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Swine , Swine Diseases/physiopathology
5.
J Appl Physiol (1985) ; 108(5): 1395-401, 2010 May.
Article in English | MEDLINE | ID: mdl-20203067

ABSTRACT

This study was designed to validate a high-resolution method to measure regional ventilation (VA) in small laboratory animals, and to compare regional Va and perfusion (Q) before and after methacholine-induced bronchoconstriction. A mixture of two different colors of 0.04-microm fluorescent microspheres (FMS) was aerosolized and administered to five anesthetized, mechanically ventilated rats. Those rats also received an intravenous injection of a mixture of two different colors of 15-microm FMS to measure regional blood flow (Q). Five additional rats were labeled with aerosol and intravenous FMS, injected with intravenous methacholine, and then relabeled with a second pair of aerosol and intravenous FMS colors. After death, the lungs were reinflated, frozen, and sequentially sliced in 16-microm intervals on an imaging cryomicrotome set to acquire signal for each of the FMS colors. The reconstructed lung images were sampled using randomly placed 3-mm radius spheres. Va within each sphere was estimated from the aerosol fluorescence signal, and Q was estimated from the number of 15-microm FMS within each sphere. Method error ranged from 6 to 8% for Q and 0.5 to 4.0% for Va. The mean coefficient of variation for Q was 17%, and for Va was 34%. The administration of methacholine altered the distribution of both VA and Q within lung regions, with a change in Va distribution nearly twice as large as that seen for Q. The methacholine-induced changes in Va were not associated with compensatory shifts in Q. Cryomicrotome images of FMS markers provide a high-resolution, anatomically specific means of measuring regional VA/Q responses in the rat.


Subject(s)
Lung/blood supply , Lung/physiology , Pulmonary Circulation , Ventilation-Perfusion Ratio , Administration, Inhalation , Aerosols , Animals , Bronchoconstriction , Bronchoconstrictor Agents/administration & dosage , Fluorescent Dyes/administration & dosage , Frozen Sections , Image Processing, Computer-Assisted , Injections, Intravenous , Lung/drug effects , Male , Methacholine Chloride/administration & dosage , Microspheres , Rats , Rats, Sprague-Dawley , Regional Blood Flow , Reproducibility of Results , Respiration, Artificial
6.
J Appl Physiol (1985) ; 107(3): 755-62, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19608933

ABSTRACT

Previous studies reported that regional CO(2) tension might affect regional ventilation (V) following acute pulmonary thromboembolism (APTE). We investigated the pathophysiology and magnitude of these changes. Eight anesthetized and ventilated piglets received autologous clots at time = 0 min until mean pulmonary artery pressure was 2.5 times baseline. The distribution of V and perfusion (Q) at four different times (-5, 30, 60, 120 min) was mapped by fluorescent microspheres. Regional V and Q were examined postmortem by sectioning the air-dried lung into 900-1,000 samples of approximately 2 cm(3) each. After the redistribution of regional Q by APTE, but in the scenario assuming that no V shift had yet occurred, CO(2) tension in different lung regions at 30 min post-APTE (P(X)CO(2)) was estimated from the V/Q data and divided into four distinct clusters: i.e., P(X)CO(2) < 10 Torr; 10 < P(X)CO(2) < 25 Torr; 25 < P(X)CO(2) < 50 Torr; P(X)CO(2) > 50 Torr. Our data showed that the clusters in higher V/Q regions (with a P(X)CO(2) < 25 Torr) received approximately 35% less V when measured within 30 min of APTE, whereas, in contrast, the lower V/Q regions showed no statistically significant increases in their V. However, after 30 min, there was minimal further redistribution of V. We conclude that there are significant compensatory V shifts out of regions of low CO(2) tension soon following APTE, and that these variations in regional CO(2) tension, which initiate CO(2)-dependent changes in airway resistance and lung parenchymal compliance, can lead to improved gas exchange.


Subject(s)
Carbon Dioxide/metabolism , Homeostasis/physiology , Pulmonary Embolism/physiopathology , Respiratory Mechanics/physiology , Acute Disease , Anaerobic Threshold/physiology , Animals , Blood Gas Analysis , Cluster Analysis , Hemodynamics/physiology , Lung/pathology , Microspheres , Pulmonary Alveoli/physiology , Pulmonary Embolism/pathology , Pulmonary Gas Exchange/physiology , Swine , Tidal Volume/physiology
7.
ASAIO J ; 54(3): 256-69, 2008.
Article in English | MEDLINE | ID: mdl-18496275

ABSTRACT

We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p < 0.01) during TLV than CMV: PaO2, venous oxygen saturation, respiratory compliance, cardiac output, stroke volume, oxygen delivery, ventilatory efficiency index; alveolar area, lung % gas exchange space, and expansion index. The following were lower (p < 0.01) during TLV compared with CMV: inspiratory and expiratory pause pressures, mean airway pressure, minute ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.


Subject(s)
Liquid Ventilation , Lung Injury , Respiration, Artificial , Animals , Hemodynamics , Inflammation/pathology , Lung/drug effects , Lung/pathology , Lung/physiopathology , Oleic Acid/toxicity , Respiration, Artificial/adverse effects , Respiratory Mechanics , Sheep
8.
Respir Physiol Neurobiol ; 159(1): 76-84, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17804304

ABSTRACT

Studies in whole animals, isolated lungs and pulmonary tissue strips have shown that the pulmonary vascular resistance (PVR) to hypoxia is temporally biphasic in nature. We studied the regional temporal response to hypoxia in prone pigs. The animals were ventilated with an FIO2 of 0.21 (control), followed by an FIO2 of 0.12 for 180 min. A biphasic response in P(pa) to hypoxia was seen with the first peak between 10 and 20 min and a second rise in P(pa) starting after 30 min, which was due to an increase in cardiac output. Regional blood flow (Q ) and ventilation (V (A)) were measured using i.v. infusion of 15 microm and inhalation of 1 microm fluorescent microspheres, respectively. We grouped the lung pieces according to their temporal relative flow response to hypoxia. The five groups were each spatially distributed similarly, but not identically, among the animals. The corresponding relative ventilation to each group did not vary much. We conclude that in the prone pig, the PVR response to sustained hypoxia varies among regions of the lungs. Following an initial rise in PVR in most lung pieces, we found unexpectedly that some regions continue to increase PVR progressively and while other regions decrease PVR after the initial increase. The net effect is little change of overall PVR to hypoxia with time. Normoxic control animals had little change in their hemodynamics and the large majority of the lung pieces did not change their resistance over 3h. We speculate that the differential response of regions may be due to a differential role of nitric oxide, endothelin-1 release or K(+) channels.


Subject(s)
Hypoxia/physiopathology , Lung/blood supply , Pulmonary Circulation/physiology , Vascular Resistance/physiology , Vasoconstriction/physiology , Animals , Prone Position , Swine
9.
J Appl Physiol (1985) ; 102(2): 762-71, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17082362

ABSTRACT

We studied the roles of endothelins in determining ventilation (Va) and perfusion (Q) mismatch in a porcine model of acute pulmonary thromboembolism (APTE), using a nonspecific endothelin antagonist, tezosentan. Nine anesthetized piglets (approximately 23 kg) received autologous clots (approximately 20 g) via a central venous catheter at time = 0 min. The distribution of Va and Q at five different time points (-30, -5, 30, 60, 120 min) was mapped by fluorescent microspheres of 10 different colors. Five piglets (group 1) received tezosentan (courtesy of Actelion) starting at time = 40 min for 2 h, and four piglets (group 2) received only saline and served as control. Our results showed that, in all of the animals at 30 min following APTE but before tezosentan, the mean Va/Q was increased, as was Va/Q heterogeneity (log SD Va/Q), which represented a widening of its main peak. Afterwards, tezosentan attenuated the pulmonary hypertension in group 1 but also produced moderate systemic hypotension. However, it did not improve arterial PO2 or Va/Q mismatch. We concluded that endothelin antagonism had minimal impact on gas exchange following APTE and confirmed our earlier observation that the main mechanism for hypoxemia in APTE was due to the mechanical redistribution of pulmonary regional blood flow away from the embolized vessels, resulting in the creation of many divergent low and high Va/Q regions.


Subject(s)
Endothelin Receptor Antagonists , Hypoxia/etiology , Hypoxia/physiopathology , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , Acute Disease , Animals , Disease Models, Animal , Imaging, Three-Dimensional , Lung/blood supply , Lung/physiopathology , Microspheres , Pulmonary Gas Exchange/drug effects , Pulmonary Gas Exchange/physiology , Pulmonary Ventilation/drug effects , Pulmonary Ventilation/physiology , Pyridines/pharmacology , Receptors, Endothelin/drug effects , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Swine , Tetrazoles/pharmacology , Vasodilator Agents/pharmacology , Ventilation-Perfusion Ratio/drug effects , Ventilation-Perfusion Ratio/physiology
10.
Chest ; 130(1): 85-92, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16840387

ABSTRACT

STUDY OBJECTIVES: Hypercapnic acidosis has antiinflammatory effects in animal models of acute lung injury (ALI) and improves ventilation-perfusion (V/Q) matching in normal lungs. The effect of hypercapnia on V/Q matching in ALI is conflicting. Hypercapnic acidosis produced by reduced tidal volumes (Vts) was associated with an increased shunt fraction (QS/QT) in patients with ALI compared with control subjects. Vt differences between groups make the assessment of hypercapnic acidosis on V/Q matching difficult. Adding CO2 to the inhaled gas allows the comparison of gas exchange under identical Vt conditions. We hypothesized the presence of hypercapnic acidosis from inspired carbon dioxide (ICD) would improve gas exchange in ALI and would be superior to that of low minute ventilation (LVe) produced by reduced respiratory rate, rather than Vt. DESIGN: University laboratory study of anesthetized New Zealand White rabbits. INTERVENTIONS: Assessment of V/Q relationships using the multiple inert gas elimination technique was performed in 10 saline solution-lavaged animals, which were ventilated with 6 mL/kg Vts and a positive end-expiratory pressure of 8 cm H2O. Each rabbit was studied while it was in eucapnia, followed by hypercapnia (Pa(CO2), 95 to 100 mm Hg) induced by LVe from decreased respiratory rate and by 10% ICD, in random order. MEASUREMENTS AND RESULTS: The Pa(O2) was greater in ICD and LVe compared to eucapnia, but no significant differences in alveolar-arterial oxygen pressure difference or Pa(O2)/fraction of inspired oxygen ratio occurred. LVe statistically reduced the mean V/Q distributions compared with ICD and eucapnia. Log SDs of ventilation and combined retention and excretion curves of the dispersion index were both increased during LVe, indicating the presence of unfavorable changes in ventilation distribution. Neither LVe nor ICD altered the QS/QT. CONCLUSIONS: LVe slightly impairs overall gas exchange and ventilation distribution, but does not increase QS/QT compared with eucapnia and ICD. While ICD does not significantly improve gas exchange, it may be superior to LVe in achieving the antiinflammatory effects of "therapeutic" hypercapnia, since it does not adversely alter gas exchange and has the potential to make the lung more uniformly acidotic.


Subject(s)
Hypercapnia/metabolism , Respiratory Distress Syndrome/therapy , Animals , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Disease Models, Animal , Female , Male , Pulmonary Gas Exchange , Rabbits , Respiration, Artificial/methods , Respiratory Distress Syndrome/metabolism , Ventilation-Perfusion Ratio/physiology
11.
J Appl Physiol (1985) ; 100(3): 880-9, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16282431

ABSTRACT

Exhaled acetone is measured to estimate exposure or monitor diabetes and congestive heart failure. Interpreting this measurement depends critically on where acetone exchanges in the lung. Health professionals assume exhaled acetone originates from alveolar gas exchange, but experimental data and theoretical predictions suggest that acetone comes predominantly from airway gas exchange. We measured endogenous acetone in the exhaled breath to evaluate acetone exchange in the lung. The acetone concentration in the exhalate of healthy human subjects was measured dynamically with a quadrupole mass spectrometer and was plotted against exhaled volume. Each subject performed a series of breathing maneuvers in which the steady exhaled flow rate was the only variable. Acetone phase III had a positive slope (0.054+/-0.016 liter-1) that was statistically independent of flow rate. Exhaled acetone concentration was normalized by acetone concentration in the alveolar air, as estimated by isothermal rebreathing. Acetone concentration in the rebreathed breath ranged from 0.8 to 2.0 parts per million. Normalized end-exhaled acetone concentration was dependent on flow and was 0.79+/-0.04 and 0.85+/-0.04 for the slow and fast exhalation rates, respectively. A mathematical model of airway and alveolar gas exchange was used to evaluate acetone transport in the lung. By doubling the connective tissue (epithelium+mucosal tissue) thickness, this model predicted accurately (R2=0.94+/-0.05) the experimentally measured expirograms and demonstrated that most acetone exchange occurred in the airways of the lung. Therefore, assays using exhaled acetone measurements need to be reevaluated because they may underestimate blood levels.


Subject(s)
Acetone/analysis , Exhalation , Lung/physiology , Pulmonary Gas Exchange , Adult , Computer Simulation , Female , Hot Temperature , Humans , Inhalation/physiology , Male , Mass Spectrometry , Mathematics , Middle Aged , Models, Biological , Partial Pressure , Respiration , Respiratory Function Tests/methods , Time Factors
12.
J Appl Physiol (1985) ; 98(6): 2242-8, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15705726

ABSTRACT

Vascular infusions of 15-microm-diameter microspheres are used to study pulmonary blood flow distribution. The sites of microsphere lodging and their effects on microvascular perfusion are debated but unknown. Using intravital microscopy of the subpleural surface of rat lungs, we directly observed deposition of fluorescent microspheres. In a pump-perfused lung model, approximately 0.5 million microspheres were infused over 30 s into the pulmonary artery of seven rats. Microsphere lodging was analyzed for the location in the microvasculature and the effect on local flow after lodging. On average, we observed 3.2 microspheres per 160 alveolar facets. The microspheres always entered the arterioles as singlets and lodged at the inlets to capillaries, either in alveolar corner vessels or small arterioles. In all cases, blood flow continued either around the microspheres or into the capillaries via adjacent pathways. We conclude that 15-microm-diameter microspheres, in doses in excess of those used in typical studies, have no significant impact on pulmonary capillary blood flow distribution.


Subject(s)
Blood Flow Velocity/physiology , Hemorheology/methods , Image Interpretation, Computer-Assisted/methods , Microcirculation/cytology , Microcirculation/physiology , Microscopy, Video/methods , Microspheres , Pulmonary Circulation/physiology , Animals , Artifacts , Hemorheology/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Microfluidics/instrumentation , Microfluidics/methods , Microscopy, Video/instrumentation , Molecular Probe Techniques , Particle Size , Rats , Rats, Sprague-Dawley
13.
J Appl Physiol (1985) ; 98(5): 1862-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15591291

ABSTRACT

We studied the spatial distribution of the abnormal ventilation-perfusion (Va/Q) units in a porcine model of acute pulmonary thromboembolism (APTE), using the fluorescent microsphere (FMS) technique. Four piglets ( approximately 22 kg) were anesthetized and ventilated with room air in the prone position. Each received approximately 20 g of preformed blood clots at time t = 0 min via a large-bore central venous catheter, until the mean pulmonary arterial pressure reached 2.5 times baseline. The distributions of regional Va and blood flow (Q) at five time points (t = -30, -5, 30, 60, 120 min) were mapped by FMS of 10 distinct colors, i.e., aerosolization of 1-mum FMS for labeling Va and intravenous injection of 15-mum FMS for labeling Q. Our results showed that, at t = 30 min following APTE, mean Va/Q (Va/Q = 2.48 +/- 1.12) and Va/Q heterogeneity (log SD Va/Q = 1.76 +/- 0.23) were significantly increased. There were also significant increases in physiological dead space (11.2 +/- 12.7% at 60 min), but the shunt fraction (Va/Q = 0) remained minimal. Cluster analyses showed that the low Va/Q units were mainly seen in the least embolized regions, whereas the high Va/Q units and dead space were found in the peripheral subpleural regions distal to the clots. At 60 and 120 min, there were modest recoveries in the hemodynamics and gas exchange toward baseline. Redistribution pattern was mostly seen in regional Q, whereas Va remained relatively unchanged. We concluded that the hypoxemia seen after APTE could be explained by the mechanical diversion of Q to the less embolized regions because of the vascular obstruction by clots elsewhere. These low Va/Q units created by high flow, rather than low Va, accounted for most of the resultant hypoxemia.


Subject(s)
Pulmonary Embolism/metabolism , Pulmonary Gas Exchange/physiology , Pulmonary Ventilation/physiology , Ventilation-Perfusion Ratio/physiology , Acute Disease , Animals , Cluster Analysis , Swine
14.
Respir Physiol Neurobiol ; 144(2-3): 281-94, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15556109

ABSTRACT

Hypoxic pulmonary vasoconstriction (HPV) is thought to protect gas exchange by decreasing perfusion to hypoxic regions. However, with global hypoxia, non-uniformity in HPV may cause over-perfusion to some regions, leading to high-altitude pulmonary edema. To quantify the spatial distribution of HPV and regional PO2 (PRO2) among small lung regions (approximately 2.0 cm3), five prone beagles (approximately 8.3 kg) were anesthetized and ventilated (PEEP approximately 2 cm H2O) with an F1O2 of 0.21, then 0.50, 0.18, 0.15, and 0.12 in random order. Regional blood perfusion (Q), ventilation (VA) and calculated PRO2 were obtained using iv infusion of 15 microm and inhalation of 1 microm fluorescent microspheres. Lung pieces were clustered by their relative blood flow response to each F1O2. Clusters were shown to be spatially grouped within animals and across animals. Lung piece resistance increased as PRO2 decreased to 60-70 mmHg but dropped at PRO2's < 60mmHg. Regional ventilation changed little with hypoxia. HPV varied more in strength of response, rather than PRO2 response threshold. In initially homogeneous VA/Q lungs, we conclude that HPV response is heterogeneous and spatially clustered.


Subject(s)
Hypoxia/physiopathology , Pulmonary Circulation/physiology , Pulmonary Gas Exchange/physiology , Supine Position/physiology , Vasoconstriction/physiology , Analysis of Variance , Animals , Cluster Analysis , Dogs , Female , Ischemic Preconditioning/methods , Lung/metabolism , Lung/physiopathology , Male , Oxygen/metabolism , Regional Blood Flow/physiology , Ventilation-Perfusion Ratio
15.
J Appl Physiol (1985) ; 96(5): 1589-99, 2004 May.
Article in English | MEDLINE | ID: mdl-14698989

ABSTRACT

Hypoxic pulmonary vasoconstriction (HPV) serves to maintain optimal gas exchange by decreasing perfusion to hypoxic regions. However, global hypoxia and nonuniform HPV may result in overperfusion of poorly constricted regions leading to local edema seen in high-altitude pulmonary edema. To quantify the spatial distribution of HPV and its response to regional Po2 (Pr(O2)) among small lung regions, five pigs were anesthetized and mechanically ventilated in the supine posture. The animals were ventilated with an inspired O2 fraction (Fi(O2)) of 0.50 and 0.21 and then (in random order) 0.15, 0.12, and 0.09. Regional blood flow (Q) and alveolar ventilation (Va) were measured by using intravenous infusion of 15 microm and inhalation of 1-microm fluorescent microspheres, respectively. Pr(O2) was calculated for each piece at each Fi(O2). Lung pieces differed in their Q response to hypoxia in a manner related to their initial Va/Q with Fi(O2) = 0.21. Reducing Fi(O2) < 0.15 decreased Q to the initially high Va/Q (higher Pr(O2)) regions and forced Q into the low Va/Q (dorsal-caudal) regions. Resistance increased in most lung pieces as Pr(O2) decreased, reaching a maximum resistance when Pr(O2) is between 40 and 50 Torr. Local resistance decreased at PrO2 < 40 Torr. Pieces were statistically clustered with respect to their relative Q response pattern to each Fi(O2). Some clusters were shown to be spatially organized. We conclude that HPV is spatially heterogeneous. The heterogeneity of Q response may be related, in part, to the heterogeneity of baseline Va/Q.


Subject(s)
Hypoxia/physiopathology , Pulmonary Circulation , Vasoconstriction , Airway Resistance , Animals , Female , Inhalation , Male , Microspheres , Oxygen , Supine Position , Swine , Ventilation-Perfusion Ratio
16.
J Appl Physiol (1985) ; 96(5): 1894-8, 2004 May.
Article in English | MEDLINE | ID: mdl-14660515

ABSTRACT

We have shown previously that inspired CO2 (3-5%) improves ventilation-perfusion (Va/Q) matching but with the consequence of mild arterial hypercapnia and respiratory acidosis. We hypothesized that adding CO2 only late in inspiration to limit its effects to the conducting airways would enhance Va/Q matching and improve oxygenation without arterial hypercapnia. CO2 was added in the latter half of inspiration in a volume aimed to reach a concentration of 5% in the conducting airways throughout the respiratory cycle. Ten mixed-breed dogs were anesthetized and, in a randomized order, ventilated with room air, 5% CO2 throughout inspiration, and CO2 added only to the latter half of inspiration. The multiple inert-gas elimination technique was used to assess Va/Q heterogeneity. Late-inspired CO2 produced only very small changes in arterial pH (7.38 vs. 7.40) and arterial CO2 (40.6 vs. 39.4 Torr). Compared with baseline, late-inspired CO2 significantly improved arterial oxygenation (97.5 vs. 94.2 Torr), decreased the alveolar-arterial Po2 difference (10.4 vs. 15.7 Torr) and decreased the multiple inert-gas elimination technique-derived arterial-alveolar inert gas area difference, a global measurement of Va/Q heterogeneity (0.36 vs. 0.22). These changes were equal to those with 5% CO2 throughout inspiration (arterial Po2, 102.5 Torr; alveolar-arterial Po2 difference, 10.1 Torr; and arterial-alveolar inert gas area difference, 0.21). In conclusion, we have established that the majority of the improvement in gas exchange efficiency with inspired CO2 can be achieved by limiting its application to the conducting airways and does not require systemic acidosis.


Subject(s)
Acidosis, Respiratory/prevention & control , Carbon Dioxide/administration & dosage , Inhalation , Ventilation-Perfusion Ratio/drug effects , Administration, Inhalation , Animals , Arteries , Carbon Dioxide/pharmacology , Dogs , Dose-Response Relationship, Drug , Gases/blood , Hydrogen-Ion Concentration , Pulmonary Gas Exchange/drug effects , Time Factors
17.
Am J Respir Crit Care Med ; 167(7): 1016-20, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12480611

ABSTRACT

Pulmonary arterial occlusion pressure is not thought to reflect left atrial pressure (Pla) when alveolar pressure (PA) exceeds pulmonary venous pressure because alveolar capillaries collapse and the required continuous fluid column between the pulmonary artery and left atrium is interrupted. However, arterial-to-venous flow can occur when PA exceeds both the pulmonary arterial pressure (Ppa) and pulmonary venous pressure (i.e., in Zone 1 conditions), indicating the existence of a continuous patent vascular channel. Accordingly, Ppa should reflect Pla under these conditions. To investigate this connection cannulas were placed in the pulmonary arteries and left atria of eight excised rabbit lungs. Ppa and Pla were set 5 cm H2O above PA, which ranged from 0 to 25 cm H2O. Pla was then reduced in 2 to 4 cm H2O decrements while recording Ppa when arterial-to-venous flow ceased. At all PAs greater than 0 cm H2O, Pla was accurately reflected by the Ppa when both were exceeded by PA. The greater the PA, the lower the Ppa could track Pla below PA. Pla can be accurately measured by a pulmonary arterial catheter under Zone 1 conditions.


Subject(s)
Heart Atria/physiopathology , Pulmonary Artery/physiopathology , Animals , Disease Models, Animal , Female , Male , Models, Cardiovascular , Pulmonary Circulation/physiology , Pulmonary Edema/physiopathology , Pulmonary Wedge Pressure/physiology , Rabbits
18.
Am J Respir Crit Care Med ; 166(3): 403-8, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12153979

ABSTRACT

To investigate whether hypercapnic acidosis protects against ventilator-induced lung injury (VILI) in vivo, we subjected 12 anesthetized, paralyzed rabbits to high tidal volume ventilation (25 cc/kg) at 32 breaths per minute and zero positive end-expiratory pressure for 4 hours. Each rabbit was randomized to receive either an FI(CO(2)) to achieve eucapnia (Pa(CO(2)) approximately 40 mm Hg; n = 6) or hypercapnic acidosis (Pa(CO(2)) 80-100 mm Hg; n = 6). Injury was assessed by measuring differences between the two groups' respiratory mechanics, gas exchange, wet:dry weight, bronchoalveolar lavage fluid protein concentration and cell count, and injury score. The eucapnic group showed significantly higher plateau pressures (27.0 +/- 2.5 versus 20.9 +/- 3.0; p = 0.016), change in Pa(O(2)) (165.2 +/- 19.4 versus 77.3 +/- 87.9 mm Hg; p = 0.02), wet:dry weight (9.7 +/- 2.3 versus 6.6 +/- 1.8; p = 0.04), bronchoalveolar lavage protein concentration (1,350 +/- 228 versus 656 +/- 511 micro g/ml; p = 0.03), cell count (6.86 x 10(5) +/- 0.18 x 10(5) versus 2.84 x 10(5) +/- 0.28 x 10(5) nucleated cells/ml; p = 0.021), and injury score (7.0 +/- 3.3 versus 0.7 +/- 0.9; p < 0.0001). We conclude that hypercapnic acidosis is protective against VILI in this model.


Subject(s)
Acidosis, Respiratory/physiopathology , Hypercapnia/physiopathology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Ventilators, Mechanical/adverse effects , Acidosis, Respiratory/complications , Acidosis, Respiratory/pathology , Animals , Disease Models, Animal , Hemodynamics/physiology , Hypercapnia/complications , Hypercapnia/pathology , Pulmonary Gas Exchange/physiology , Rabbits , Random Allocation , Respiratory Distress Syndrome/complications , Respiratory Mechanics/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...