Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1068153, 2023.
Article in English | MEDLINE | ID: mdl-36998614

ABSTRACT

Sildenafil is a potent vasodilator and phosphodiesterase type five inhibitor, commercially known as Revatio® and approved for the treatment of pulmonary arterial hypertension. Maternal administration of sildenafil during pregnancy is being evaluated for antenatal treatment of several conditions, including the prevention of pulmonary hypertension in fetuses with congenital diaphragmatic hernia. However, determination of a safe and effective maternal dose to achieve adequate fetal exposure to sildenafil remains challenging, as pregnancy almost always is an exclusion criterion in clinical studies. Physiologically-based pharmacokinetic (PBPK) modelling offers an attractive approach for dose finding in this specific population. The aim of this study is to exploit physiologically-based pharmacokinetic modelling to predict the required maternal dose to achieve therapeutic fetal exposure for the treatment congenital diaphragmatic hernia. A full-PBPK model was developed for sildenafil and N-desmethyl-sildenafil using the Simcyp simulator V21 platform, and verified in adult reference individuals, as well as in pregnant women, taking into account maternal and fetal physiology, along with factors known to determine hepatic disposition of sildenafil. Clinical pharmacokinetic data in mother and fetus were previously obtained in the RIDSTRESS study and were used for model verification purposes. Subsequent simulations were performed relying either on measured values for fetal fraction unbound (fu = 0.108) or on values predicted by the simulator (fu = 0.044). Adequate doses were predicted according to the efficacy target of 15 ng/mL (or 38 ng/mL) and safety target of 166 ng/mL (or 409 ng/mL), assuming measured (or predicted) fu values, respectively. Considering simulated median profiles for average steady state sildenafil concentrations, dosing regimens of 130 mg/day or 150 mg/day (administered as t.i.d.), were within the therapeutic window, assuming either measured or predicted fu values, respectively. For safety reasons, dosing should be initiated at 130 mg/day, under therapeutic drug monitoring. Additional experimental measurements should be performed to confirm accurate fetal (and maternal) values for fu. Additional characterization of pharmacodynamics in this specific population is required and may lead to further optimization of the dosing regimen.

2.
J Pharmacol Toxicol Methods ; 123: 107264, 2023.
Article in English | MEDLINE | ID: mdl-36958568

ABSTRACT

The IMI project ConcePTION was launched to fill the knowledge gap of using medicines during pregnancy and lactation. To achieve this goal, several studies are being conducted, including the bioanalysis of amoxicillin in minipig plasma and milk. A high-throughput, robust and reliable liquid chromatography tandem mass spectrometry method was developed and validated according to FDA and EMA guidelines to determine the concentrations of amoxicillin in a large number of minipig plasma and milk samples. Chromatographic separation was achieved on a Luna® Omega Polar C18, 1.6 µm, 100 × 2.1 mm column, with a mobile phase consisting of 0.1% formic acid in water and acetonitrile. Mass spectrometry used in a positive ionization mode and the transitions m/z 366.1 â†’ 349.2 was selected to monitor amoxicillin, while m/z 370.1 â†’ 114.15 was selected for the stable isotope labelled internal standard. This method features a linear quantification range of 10 ng/mL - 10 µg/mL, recovery of not less than 94.1%, a single sample extraction method for both plasma and milk matrices, and an analysis runtime of 5 min.


Subject(s)
Amoxicillin , Milk , Female , Animals , Swine , Chromatography, Liquid/methods , Milk/chemistry , Amoxicillin/analysis , Tandem Mass Spectrometry/methods , Swine, Miniature , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
3.
Front Pharmacol ; 13: 881084, 2022.
Article in English | MEDLINE | ID: mdl-35784689

ABSTRACT

Introduction: Quantitative information on disposition of maternal medicines in human milk remains a major knowledge gap. This case report presents the clinical and pharmacokinetic data of a single mother-infant pair exposed to bosentan and sildenafil for the treatment of pulmonary arterial hypertension (PAH) during lactation. Case presentation: A 43-year old mother was treated with sildenafil (20 mg, 3x/day) and bosentan (125 mg, 2x/day) for PAH. Her 21-months old infant received breastfeeding in combination with adequate complementary foods. Milk samples were collected over 24 h, at day 637 and 651 after delivery. The observed average steady-state concentrations of sildenafil (2.84 µg/L) and bosentan (49.0 µg/L) in human milk were low. The Daily Infant Dosage ingested by the nursing infant through human milk was 0.02 µg/kg/day for sildenafil and 0.29 µg/kg/day for bosentan at day 637, and 0.03 µg/kg/day and 0.60 µg/kg/day at day 651. The Relative Infant Dose calculated for an exclusively breastfed infant with an estimated milk intake of 150 ml/kg/day, was 0.06% for sildenafil and 0.24% for bosentan. General health outcome of the infant, reported by the mother, was uneventful until the sampling days. Conclusion: Low medicine concentrations were found in human milk expressed 21 months after delivery after maternal intake of 20 mg sildenafil three times daily and 125 mg bosentan twice daily. General health of the nursing infant until sampling was reported as optimal by the mother.

4.
Biomed Pharmacother ; 136: 111038, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33526310

ABSTRACT

Breastfeeding plays a major role in the health and wellbeing of mother and infant. However, information on the safety of maternal medication during breastfeeding is lacking for most medications. This leads to discontinuation of either breastfeeding or maternal therapy, although many medications are likely to be safe. Since human lactation studies are costly and challenging, validated non-clinical methods would offer an attractive alternative. This review gives an extensive overview of the non-clinical methods (in vitro, in vivo and in silico) to study the transfer of maternal medication into the human breast milk, and subsequent neonatal systemic exposure. Several in vitro models are available, but model characterization, including quantitative medication transport data across the in vitro blood-milk barrier, remains rather limited. Furthermore, animal in vivo models have been used successfully in the past. However, these models don't always mimic human physiology due to species-specific differences. Several efforts have been made to predict medication transfer into the milk based on physicochemical characteristics. However, the role of transporter proteins and several physiological factors (e.g., variable milk lipid content) are not accounted for by these methods. Physiologically-based pharmacokinetic (PBPK) modelling offers a mechanism-oriented strategy with bio-relevance. Recently, lactation PBPK models have been reported for some medications, showing at least the feasibility and value of PBPK modelling to predict transfer of medication into the human milk. However, reliable data as input for PBPK models is often missing. The iterative development of in vitro, animal in vivo and PBPK modelling methods seems to be a promising approach. Human in vitro models will deliver essential data on the transepithelial transport of medication, whereas the combination of animal in vitro and in vivo methods will deliver information to establish accurate in vitro/in vivo extrapolation (IVIVE) algorithms and mechanistic insights. Such a non-clinical platform will be developed and thoroughly evaluated by the Innovative Medicines Initiative ConcePTION.


Subject(s)
Lactation/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Human/metabolism , Milk, Human/metabolism , Models, Biological , Pharmaceutical Preparations/metabolism , Animals , Female , Humans , Infant , Infant, Newborn , Maternal Exposure/adverse effects , Models, Animal , Pharmacokinetics , Risk Assessment , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...