Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Atherosclerosis ; 319: 79-85, 2021 02.
Article in English | MEDLINE | ID: mdl-33494008

ABSTRACT

BACKGROUND AND AIMS: There is extensive evidence from bone marrow transplantation studies that hematopoietic ATP binding cassette A1 (Abca1) is atheroprotective in low-density lipoprotein receptor (Ldlr) deficient mice. In contrast, studies using lysosyme M promoter-driven deletion of Abca1 in Ldlr deficient mice failed to show similar effects. It was hypothesized that the discrepancy between these studies might be due to the presence of Ldlr in bone marrow-derived cells in the transplantation model. In this study, we aim to determine the contribution of Ldlr to the atheroprotective effect of hematopoietic Abca1 in the murine bone marrow transplantation model. METHODS: Wild-type, Ldlr-/-, Abca1-/-, and Abca1-/-Ldlr-/- bone marrow was transplanted into hypercholesterolemic Ldlr-/- mice. RESULTS: Bone marrow Lldr deficiency did not influence the effects of Abca1 on macrophage cholesterol efflux, foam cell formation, monocytosis or plasma cholesterol. Ldlr deficiency did reduce circulating and peritoneal lymphocyte counts, albeit only in animals lacking Abca1 in bone marrow-derived cells. Importantly, the effects of Abca1 deficiency on atherosclerosis susceptibility were unaltered by the presence or absence of Ldlr. Bone marrow Ldlr deficiency did lead to marginally but consistently decreased atherosclerosis, regardless of Abca1 deficiency. Thus, Ldlr expression on bone marrow-derived cells does, to a minimal extent, influence atherosclerotic lesion development, albeit independent of Abca1. CONCLUSIONS: This study provides novel insight into the relative impact of Ldlr and Abca1 in bone marrow-derived cells on macrophage foam cell formation and atherosclerosis development in vivo. We have shown that Ldlr and Abca1 differentially and independently influence atherosclerosis development in a murine bone marrow transplantation model of atherosclerosis.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Atherosclerosis , Bone Marrow , ATP-Binding Cassette Transporters/genetics , Animals , Atherosclerosis/genetics , Bone Marrow/metabolism , Cholesterol , Lipoproteins, LDL/metabolism , Mice , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism
2.
Arterioscler Thromb Vasc Biol ; 40(3): 611-623, 2020 03.
Article in English | MEDLINE | ID: mdl-31941380

ABSTRACT

OBJECTIVE: We tested the hypothesis that enlarged, dysfunctional HDL (high-density lipoprotein) particles contribute to the augmented atherosclerosis susceptibility associated with SR-BI (scavenger receptor BI) deficiency in mice. Approach and Results: We eliminated the ability of HDL particles to fully mature by targeting PLTP (phospholipid transfer protein) functionality. Particle size of the HDL population was almost fully normalized in male and female SR-BI×PLTP double knockout mice. In contrast, the plasma unesterified cholesterol to cholesteryl ester ratio remained elevated. The PLTP deficiency-induced reduction in HDL size in SR-BI knockout mice resulted in a normalized aortic tissue oxidative stress status on Western-type diet. Atherosclerosis susceptibility was-however-only partially reversed in double knockout mice, which can likely be attributed to the fact that they developed a metabolic syndrome-like phenotype characterized by obesity, hypertriglyceridemia, and a reduced glucose tolerance. Mechanistic studies in chow diet-fed mice revealed that the diminished glucose tolerance was probably secondary to the exaggerated postprandial triglyceride response. The absence of PLTP did not affect LPL (lipoprotein lipase)-mediated triglyceride lipolysis but rather modified the ability of VLDL (very low-density lipoprotein)/chylomicron remnants to be cleared from the circulation by the liver through receptors other than SR-BI. As a result, livers of double knockout mice only cleared 26% of the fractional dose of [14C]cholesteryl oleate after intravenous VLDL-like particle injection. CONCLUSIONS: We have shown that disruption of PLTP-mediated HDL maturation reduces SR-BI deficiency-driven atherosclerosis susceptibility in mice despite the induction of proatherogenic metabolic complications in the double knockout mice.


Subject(s)
Atherosclerosis/prevention & control , Cholesterol, HDL/blood , Energy Metabolism , Liver/metabolism , Metabolic Syndrome/blood , Phospholipid Transfer Proteins/deficiency , Scavenger Receptors, Class B/deficiency , Animals , Aorta/metabolism , Aorta/pathology , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Cholesterol Esters/administration & dosage , Cholesterol Esters/blood , Disease Models, Animal , Female , Glucose Intolerance/blood , Glucose Intolerance/genetics , Hypertriglyceridemia/blood , Hypertriglyceridemia/genetics , Male , Metabolic Syndrome/genetics , Mice, Inbred C57BL , Mice, Knockout , Obesity/blood , Obesity/genetics , Phospholipid Transfer Proteins/genetics , Plaque, Atherosclerotic , Scavenger Receptors, Class B/genetics
3.
Atherosclerosis ; 251: 159-163, 2016 08.
Article in English | MEDLINE | ID: mdl-27323229

ABSTRACT

BACKGROUND AND AIMS: We explored the role of ATP-binding cassette transporter A1 (Abca1), in post-myocardial infarction (MI) cardiac injury. METHODS: In Abca1(-/-) mice, wild type (WT) mice, and WT mice transplanted with Abca1(-/-) or WT bone marrow, an MI was induced in vivo. Furthermore, an ex vivo MI was induced in isolated Abca1(-/-) and WT hearts. RESULTS: Twenty-four hours and two weeks after in vivo MI induction, MI size was reduced in Abca1(-/-) (-58%, p = 0.007; -59%, p = 0.03) compared to WT. Ex vivo MI induction showed no effect of Abca1(-/-) on infarct size. Interestingly, two weeks after MI, Abca1(-/-) mice showed higher circulating levels of B-cells (+3.0 fold, p = 0.02) and T-cells (+4.2 fold, p = 0.002) compared to WT. Bone marrow-specific Abca1(-/-) tended to reduce infarct size (-43%, p = 0.12), suggesting a detrimental role for hematopoietic Abca1 after MI. CONCLUSIONS: Although Abca1 has a protective role in atherosclerosis, it exerts detrimental effects on cardiac function after MI.


Subject(s)
ATP Binding Cassette Transporter 1/deficiency , Heart/physiopathology , Myocardial Infarction/genetics , Myocardial Infarction/prevention & control , Animals , Atherosclerosis/metabolism , B-Lymphocytes/cytology , Bone Marrow Transplantation , Female , Leukocytes/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/metabolism
4.
PLoS One ; 9(10): e109024, 2014.
Article in English | MEDLINE | ID: mdl-25347070

ABSTRACT

INTRODUCTION: Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. METHODS AND RESULTS: LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. CONCLUSIONS: Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , Bone Marrow Cells/metabolism , Receptors, LDL/deficiency , Receptors, Steroid/deficiency , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Atherosclerosis/therapy , Biomarkers , Cholesterol/blood , Cholesterol/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Foam Cells/pathology , Gene Expression , Inflammation Mediators/metabolism , Leukocyte Count , Macrophages/metabolism , Male , Mice , Mice, Knockout , Mustard Gas , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Receptors, LDL/genetics , Receptors, Steroid/genetics , Time Factors , Triglycerides/blood
5.
PLoS One ; 7(10): e48080, 2012.
Article in English | MEDLINE | ID: mdl-23133551

ABSTRACT

AIM: ATP-binding cassette transporter A1 (ABCA1) is an important mediator of macrophage cholesterol efflux. It mediates the efflux of cellular cholesterol to lipid-poor apolipoprotein A-I. LDL receptor (LDLr) knockout (KO) mice deficient for leukocyte ABCA1 (ABCA1 KO→LDLr KO) show increased atherosclerosis and splenic lipid accumulation despite largely attenuated serum cholesterol levels. In the present study, we aimed to explore the importance of the spleen for the atheroprotective effects of leukocyte ABCA1. METHODS: LDLr KO mice were transplanted with bone marrow from ABCA1 KO mice or wild-type (WT) controls. After 8 weeks recovery, mice were either splenectomized (SP-x) or underwent a sham operation, and were subsequently challenged with a Western-type diet (WTD). RESULTS: In agreement with previous studies, the atherosclerotic lesion area in ABCA1 KO→LDLr KO sham animals (655 ± 82 × 10(3) µm(2)) was 1.4-fold (p = 0.03) larger compared to sham WT→LDLr KO mice (459 ± 33 × 10(3) µm(2)) after 8 weeks WTD feeding, despite 1.7-fold (p<0.001) lower serum cholesterol levels. Interestingly, deletion of ABCA1 in leukocytes led to 1.6-fold higher neutrophil content in the spleen in absence of differences in circulating neutrophils. Levels of KC, an important chemoattractant for neutrophils, in serum, however, were increased 2.9-fold (p = 0.07) in ABCA1 KO→LDLr KO mice. SP-x induced blood neutrophilia as compared to WT→LDLr KO mice (1.9-fold; p<0.05), but did not evoke differences in serum cholesterol and anti-oxLDL antibody levels. Atherosclerotic lesion development, however, was 1.3-fold induced both in the presence and absence of leukocyte ABCA1 (WT: 614 ± 106 × 10(3) µm(2), ABCA1 KO: 786 ± 44 × 10(3) µm(2)). Two-way ANOVA revealed independent effects on atherosclerosis for both leukocyte ABCA1 deficiency and SP-x (p<0.05). CONCLUSIONS: The observed splenic alterations induced by leukocyte ABCA1 deficiency do not play a significant role in the anti-atherogenic effects of leukocyte ABCA1 on lesion development.


Subject(s)
ATP-Binding Cassette Transporters/blood , ATP-Binding Cassette Transporters/genetics , Leukocytes/metabolism , Receptors, LDL/genetics , ATP Binding Cassette Transporter 1 , Animals , Aorta/pathology , Atherosclerosis/prevention & control , Cholesterol/metabolism , Cytokines/metabolism , Flow Cytometry/methods , Lipids/chemistry , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/metabolism , Spleen/metabolism , Splenectomy/methods , Triglycerides/metabolism
6.
Arterioscler Thromb Vasc Biol ; 32(9): 2223-31, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22772754

ABSTRACT

OBJECTIVE: The physiological function of the ATP-binding cassette G1 (ABCG1) transporter in humans is not yet elucidated, as no genetic disease caused by ABCG1 mutations has been documented. The goal of our study was, therefore, to investigate the potential role(s) of ABCG1 in lipid metabolism in humans. METHODS AND RESULTS: Here we report that among the 104 polymorphisms present in the ABCG1 gene, the analysis of the frequent functional rs1893590 and rs1378577 single nucleotide polymorphisms located in the regulatory region of ABCG1 in the Regression Growth Evaluation Statin Study population revealed that both ABCG1 single nucleotide polymorphisms were significantly associated with plasma lipoprotein lipase (LPL) activity. Moreover, we observed that plasma LPL activity was modestly reduced in Abcg1(-/-) mice as compared with control mice. Adipose tissue and skeletal muscle are the major tissues accounting for levels and activity of plasma LPL in the body. However, beyond its lipolytic action in the plasma compartment, LPL was also described to act locally at the cellular level. Thus, macrophage LPL was reported to promote foam cell formation and atherosclerosis in vivo. Analysis of the relationship between ABCG1 and LPL in macrophages revealed that the knockdown of ABCG1 expression (ABCG1 knockdown) in primary cultures of human monocyte-derived macrophages using small interfering RNAs led to a marked reduction of both the secretion and activity of LPL. Indeed, LPL was trapped at the cell surface of ABCG1 knockdown human monocyte-derived macrophages, likely in cholesterol-rich domains, thereby reducing the bioavailability and activity of LPL. As a consequence, LPL-mediated lipid accumulation in human macrophage foam cells in the presence of triglyceride-rich lipoproteins was abolished when ABCG1 expression was repressed. CONCLUSIONS: We presently report that ABCG1 controls LPL activity and promotes lipid accumulation in human macrophages in the presence of triglyceride-rich lipoproteins, thereby suggesting a potential deleterious role of macrophage ABCG1 in metabolic situations associated with high levels of circulating triglyceride-rich lipoproteins together with the presence of macrophages in the arterial wall.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Atherosclerosis/enzymology , Foam Cells/enzymology , Lipoprotein Lipase/blood , Lipoproteins/metabolism , Macrophages/enzymology , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/genetics , Adipose Tissue/enzymology , Aged , Analysis of Variance , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Line , Chi-Square Distribution , Cholesterol/metabolism , Foam Cells/pathology , Gene Expression Regulation, Enzymologic , Genetic Predisposition to Disease , Haplotypes , Humans , Lipoproteins/deficiency , Lipoproteins/genetics , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/enzymology , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RNA Interference , Risk Assessment , Risk Factors , Time Factors , Transfection , Triglycerides/metabolism
7.
Atherosclerosis ; 221(1): 41-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22196936

ABSTRACT

OBJECTIVE: As ABCG1 plays a role in cholesterol efflux, macrophage ABCG1 expression has been suggested to protect against atherosclerosis. However, we and others observed varying effects of ABCG1 deficiency on atherosclerotic lesion size. The objective of this study was to define the effect of ABCG1 deficiency during atherosclerotic lesion progression in LDL receptor knockout (LDLr(-/-)) mice. METHODS AND RESULTS: ABCG1(-/-)/LDLr(-/-) and ABCG1(+/+)/LDLr(-/-) littermates were fed a Western-type diet for 10 and 12 weeks in order to study the effect of ABCG1 deficiency in the exponential phase of atherosclerotic lesion formation. At 10 weeks of diet feeding, a significant 1.5-fold increase in early atherosclerotic lesion size (130±12×10(3) µm(2)) was observed in ABCG1(-/-)/LDLr(-/-) mice compared to ABCG1(+/+)/LDLr(-/-) mice (88±11×10(3) µm(2); p<0.05). Interestingly, in more advanced lesions, induced by 12 weeks of WTD feeding, ABCG1(-/-)/LDLr(-/-) mice showed a significant 1.7-fold decrease in atherosclerotic lesion size (160±20×10(3) µm(2) vs 273±19×10(3) µm(2) in control mice; p<0.01), indicating that in the ABCG1(-/-)/LDLr(-/-) mice progression of lesion formation is retarded as compared to ABCG1(+/+)/LDLr(-/-) mice. In addition, correlation analysis performed on 7 independent published studies and the current study confirmed that ABCG1 is atheroprotective in early lesions, while the development of advanced lesions is stimulated. CONCLUSIONS: It appears that the effect of ABCG1 deficiency on lesion development in LDLr(-/-) mice depends on the stage of atherogenesis, whereby the absence of ABCG1 leads to increased lesions at sizes<167×10(3) µm(2) while in more advanced stages of atherosclerosis enhanced apoptosis and/or compensatory mechanisms lead to retarded lesion progression.


Subject(s)
Atherosclerosis/metabolism , Lipoproteins/deficiency , Receptors, LDL/deficiency , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/genetics , Animals , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cholesterol/blood , Disease Models, Animal , Disease Progression , Lipoproteins/blood , Lipoproteins/genetics , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis , Receptors, LDL/genetics , Time Factors
8.
PLoS One ; 6(10): e26095, 2011.
Article in English | MEDLINE | ID: mdl-22022523

ABSTRACT

AIM: ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored. METHODS AND RESULTS: LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO's, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×10(3) µm(2)), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×10(3) µm(2); apoE KO: 402±78×10(3) µm(2), respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×10(3) µm(2)). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05). CONCLUSIONS: Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Atherosclerosis/pathology , Macrophages/metabolism , Receptors, LDL/deficiency , ATP Binding Cassette Transporter 1 , Animals , Apolipoproteins E/blood , Atherosclerosis/blood , Bone Marrow Transplantation , Cholesterol Esters/metabolism , Cytokines/metabolism , Dietary Fats/administration & dosage , Dietary Fats/pharmacology , Feeding Behavior/drug effects , Female , Gene Expression Regulation, Enzymologic/drug effects , Inflammation Mediators/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoproteins/blood , Liver/drug effects , Liver/enzymology , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, LDL/metabolism , Spleen/metabolism , Spleen/pathology
9.
Arterioscler Thromb Vasc Biol ; 31(1): 67-73, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21030715

ABSTRACT

OBJECTIVE: The consequences of macrophage triglyceride (TG) accumulation on atherosclerosis have not been studied in detail so far. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme for the initial step in TG hydrolysis. Because ATGL knockout (KO) mice exhibit massive TG accumulation in macrophages, we used ATGL KO mice to study the effects of macrophage TG accumulation on atherogenesis. METHODS AND RESULTS: Low-density lipoprotein receptor (LDLr) KO mice were transplanted with bone marrow from ATGL KO (ATGL KO→LDLr KO) or wild-type (WT→LDLr KO) mice and challenged with a Western-type diet for 9 weeks. Despite TG accumulation in ATGL KO macrophages, atherosclerosis in ATGL KO→LDLr KO mice was 43% reduced associated with decreased plasma monocyte chemoattractant protein-1 (MCP-1) and macrophage interleukin-6 concentrations. This coincided with a reduced amount of macrophages, possibly because of a 39% increase in intraplaque apoptosis and a decreased migratory capacity of ATGL KO macrophages. The reduced number of white blood cells might be due to a 36% decreased Lin(-)Sca-1(+)cKit(+) hematopoietic stem cell population. CONCLUSIONS: We conclude that the attenuation of atherogenesis in ATGL KO→LDLr KO mice is due to decreased infiltration of less inflammatory macrophages into the arterial wall and increased macrophage apoptosis.


Subject(s)
Atherosclerosis/prevention & control , Carboxylic Ester Hydrolases/deficiency , Macrophages/enzymology , Receptors, LDL/deficiency , Triglycerides/metabolism , Animals , Apoptosis , Atherosclerosis/enzymology , Atherosclerosis/etiology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Bone Marrow Transplantation , Carboxylic Ester Hydrolases/genetics , Cells, Cultured , Chemokine CCL2/blood , Chemotaxis , Cholesterol/blood , Diet, Atherogenic , Disease Models, Animal , Female , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Hydrolysis , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Leukocyte Count , Lipase , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Knockout , Multipotent Stem Cells/metabolism , Receptors, LDL/genetics , Triglycerides/blood , Whole-Body Irradiation
10.
Curr Drug Targets ; 12(5): 647-60, 2011 May.
Article in English | MEDLINE | ID: mdl-21039336

ABSTRACT

Atherosclerosis has been characterized as a chronic inflammatory response to cholesterol deposition in arteries. Plasma high density lipoprotein (HDL) levels bear a strong independent inverse relationship with atherosclerotic cardiovascular disease. One central antiatherogenic role of HDL is believed to be its ability to remove excessive peripheral cholesterol back to the liver for subsequent catabolism and excretion, a physiologic process termed reverse cholesterol transport (RCT). Cholesterol efflux from macrophage foam cells, the initial step of RCT is the most relevant step with respect to atherosclerosis. The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 play crucial roles in the efflux of cellular cholesterol to HDL and its apolipoproteins. Moreover, ABCA1 and ABCG1 affect cellular inflammatory cytokine secretion by modulating cholesterol content in the plasma membrane and within intracellular compartments. In humans, ABCA1 mutations can cause a severe HDL-deficiency syndrome characterized by cholesterol deposition in tissue macrophages and prevalent atherosclerosis. Disrupting Abca1 or Abcg1 in mice promotes accumulation of excessive cholesterol in macrophages, and physiological manipulation of ABCA1 expression affects atherogenesis. Here we review recent advances in the role of ABCA1 and ABCG1 in HDL metabolism, macrophage cholesterol efflux, inflammation, and atherogenesis. Next, we summarize the structure, expression, and regulation of ABCA1 and ABCG1. Finally, we give an update on the progress and pitfalls of therapeutic approaches that target ABCA1 and ABCG1 to stimulate the flux of lipids through the RCT pathway.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Atherosclerosis/physiopathology , Cholesterol/metabolism , Inflammation/physiopathology , Lipoproteins/physiology , Molecular Targeted Therapy , ATP Binding Cassette Transporter 1 , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Atherosclerosis/metabolism , Humans , Inflammation/metabolism , Mice
11.
Arterioscler Thromb Vasc Biol ; 30(7): 1439-45, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20431066

ABSTRACT

OBJECTIVE: Disruption of scavenger receptor class B type I (SR-BI) in mice impairs high-density lipoprotein (HDL)-cholesterol (HDL-C) delivery to the liver and induces susceptibility to atherosclerosis. In this study, it was investigated whether introduction of cholesteryl ester transfer protein (CETP) can normalize HDL-C transport to the liver and reduce atherosclerosis in SR-BI knockout (KO) mice. METHODS AND RESULTS: Expression of human CETP in SR-BI(KO) mice resulted in decreased plasma HDL-C levels, both on chow diet (1.8-fold, P<0.001) and on challenge with Western-type diet (1.6-fold, P<0.01). Furthermore, the presence of CETP partially normalized the abnormally large HDL particles observed in SR-BI(KO) mice. Unexpectedly, expression of CETP in SR-BI(KO) mice did not reduce atherosclerotic lesion development, probably because of consequences of SR-BI deficiency, including the persistence of higher VLDL-cholesterol (VLDL-C) levels, unchanged elevated free cholesterol/total cholesterol ratio, and the increased oxidative status of the animals. In addition, CETP expression did not normalize other characteristics of SR-BI deficiency, including female infertility, reticulocytosis, thrombocytopenia, and impaired platelet aggregation. CONCLUSIONS: CETP restores HDL-C levels in SR-BI(KO) mice, but it does not change the susceptibility to atherosclerosis and other typical characteristics that are associated with SR-BI disruption. This may indicate that the pathophysiology of SR-BI deficiency is not a direct consequence of changes in the HDL pool.


Subject(s)
Atherosclerosis/metabolism , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL/blood , Liver/metabolism , Scavenger Receptors, Class B/deficiency , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cholesterol Ester Transfer Proteins/genetics , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Disease Models, Animal , Female , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxidative Stress , Particle Size , Platelet Aggregation/genetics , Platelet Count , Reticulocytosis/genetics , Scavenger Receptors, Class B/genetics
12.
Atherosclerosis ; 205(2): 420-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19217108

ABSTRACT

OBJECTIVE: ATP-binding cassette transporter G1 (Abcg1) and apolipoprotein E (Apoe) play a role in macrophage cholesterol efflux and consequently the development of atherosclerosis. A possible interaction between Abcg1 and Apoe in cholesterol efflux was postulated, but the potential combined action of these proteins on atherosclerotic lesion formation is unclear. METHODS: LDL receptor knockout (KO) mice were transplanted with bone marrow from Abcg1/Apoe double KO (dKO) mice, their respective single knockouts, and wild-type (WT) controls and challenged with a high-fat/high-cholesterol diet for 6 weeks to induce atherosclerosis. RESULTS: No differences were found in serum lipid levels. The mean atherosclerotic lesion area in dKO transplanted animals (187+/-18x10(3)microm(2)) was 1.4-fold (p<0.01) increased compared to single knockouts (Abcg1 KO: 138+/-5x10(3)microm(2); Apoe KO: 131+/-7x10(3)microm(2)) and 1.9-fold (p<0.001) as compared to WT controls (97+/-15x10(3)microm(2)). In vitro cholesterol efflux experiments established that combined deletion of Abcg1 and Apoe leads to a larger attenuation of macrophage cholesterol efflux to HDL as compared to single knockouts. CONCLUSIONS: Single deletion of macrophage Abcg1 or Apoe does lead to a moderate non-significant increase in atherosclerotic lesion development as tested by ANOVA, while combined deletion of Abcg1 and Apoe induces a more dramatic and significant increase in atherosclerosis. Our results indicate an additive, independent effect for both macrophage Abcg1 and Apoe in the prevention of atherosclerosis.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apolipoproteins E/metabolism , Atherosclerosis/pathology , Lipoproteins/metabolism , Macrophages/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/genetics , Animals , Aorta/pathology , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Bone Marrow Transplantation , Cholesterol/metabolism , Gene Deletion , Genotype , Lipoproteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological
13.
Mol Pharm ; 6(1): 182-9, 2009.
Article in English | MEDLINE | ID: mdl-19183106

ABSTRACT

To investigate the potential for pregnane X receptor (PXR) ligands as antiatherosclerotic drugs, we have determined the effect of PXR activation on lipid metabolism in an established atherosclerotic mouse model. LDL receptor knockout mice were treated with the PXR agonist PCN. PCN induced a striking 66% decrease in plasma LDL-cholesterol levels. PCN did not affect the cholesterol levels of high-density lipoprotein (HDL) or very-low-density lipoprotein (VLDL). VLDL-triglyceride levels were 2.2-fold increased by PCN, resulting in the presence of triglyceride-rich VLDL particles. This coincided with a 60% decreased hepatic lipase (HL)-mediated plasma lipolysis rate, which could be attributed to a decrease in the hepatic mRNA expression level of both HL (-31%) and its cofactor apolipoprotein A4 (-62%). In the liver, PCN induced a significant increase in the level of triglycerides (+65%) and phospholipids (+72%), a hallmark of hepatic steatosis, leading to a marked increase in Oil red O neutral lipid staining. A similar effect was noticed in ApoE knockout mice. Our studies show that activation of the nuclear receptor PXR by PCN leads to an inhibition of the plasma HL-mediated lipolysis rate, which is associated with a decrease in plasma LDL-cholesterol levels and induction of hepatic steatosis in LDL receptor knockout mice.


Subject(s)
Cholesterol, LDL/blood , Fatty Liver/metabolism , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Receptors, Steroid/metabolism , Animals , Fatty Liver/genetics , Fatty Liver/pathology , Gene Expression Regulation/drug effects , Mice , Mice, Knockout , Pregnane X Receptor , Receptors, LDL/genetics , Receptors, Steroid/antagonists & inhibitors , Triglycerides/blood
14.
J Lipid Res ; 50(6): 1039-46, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19179307

ABSTRACT

Impaired scavenger receptor class B type I (SR-BI)-mediated uptake of HDL-cholesterol esters (HDL-CE) induces adrenal insufficiency in mice. Humans contain an alternative route of HDL-CE clearance, namely through the transfer by cholesteryl ester transfer protein (CETP) to apolipoprotein B lipoproteins for subsequent uptake via the LDL receptor. In this study, we determined whether CETP can compensate for loss of adrenal SR-BI. Transgenic expression of human CETP (CETP Tg) in SR-BI knockout (KO) mice increased adrenal HDL-CE clearance from 33-58% of the control value. SR-BI KO/CETP Tg and SR-BI KO mice displayed adrenal hypertrophy due to equally high plasma adrenocorticotropic hormone levels. Adrenal cholesterol levels and plasma corticosterone levels were 38-52% decreased in SR-BI KO mice with and without CETP expression. SR-BI KO/CETP Tg mice also failed to increase their corticosterone level after lipopolysaccharide challenge, leading to an identical >4-fold increased tumor necrosis factor-alpha response compared with controls. These data indicate that uptake of CE via other routes than SR-BI is not sufficient to generate the cholesterol pool needed for optimal adrenal steroidogenesis. In conclusion, we have shown that CETP-mediated transfer of HDL-CE is not able to reverse adrenal insufficiency in SR-BI knockout mice. Thus, SR-BI-mediated uptake of serum cholesterol is essential for optimal adrenal function.


Subject(s)
Adrenal Glands/metabolism , Cholesterol/blood , Glucocorticoids/biosynthesis , Scavenger Receptors, Class B/metabolism , Adrenocorticotropic Hormone/blood , Animals , Base Sequence , Biological Transport, Active , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol Esters/blood , Corticosterone/blood , DNA Primers/genetics , Humans , Lipoproteins, HDL/blood , Mice , Mice, Knockout , Mice, Transgenic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scavenger Receptors, Class B/deficiency , Scavenger Receptors, Class B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...