Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 55: 110664, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39040558

ABSTRACT

This paper introduces a dataset of aerial imagery captured during the 2022 cocoa growing season in the central-western region of Côte d'Ivoire. The images were acquired using a multispectral camera mounted on a DJI Phantom 4 unmanned aerial vehicle (UAV). The agricultural land surveyed encompasses 10 different types of cocoa-based agroforestry systems, each ranging from 2.6 ha to 8.3 ha, totaling 7638 images and covering 30 ha. The UAV mission was conducted at an altitude of 80 m, with a side overlap of 70 % and a front overlap of 80 %. This configuration achieved ground sampling distances (GSD) ranging from 4.2 to 4.6 cm providing high-resolution detailed imagery of those lands. These high-resolution RGB and multispectral images can be used to characterize the structural complexity of the systems as well as the abundance, and the health of the trees in these cocoa-based systems. It can be a valuable resource for researchers in the fields of ecology, agriculture, and environmental monitoring. The dataset supports a wide range of applications, from precision agriculture to sustainable cocoa land use management, making it a pivotal tool for enhancing agricultural practices and ecosystem management in Ivorian regions facing environmental and economic challenges.

2.
Ecotoxicol Environ Saf ; 238: 113590, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35525117

ABSTRACT

BACKGROUND: The adoption of innovative cropping systems with low pesticide inputs would reduce environmental degradation and dependency on the use of plant protection products. Evaluating the pesticide risk to human health is a growing concern in the assessment of the sustainability of cropping practices. The assessment of human health risks linked to pesticide use in either conventional or innovative cropping systems is poorly documented in the literature. OBJECTIVES: This study focused on the assessment of pesticide exposure and human health risks from pesticide use in arable cropping systems (two monoculture and one intercropping system) associated with the use of various tillage practices (conventional tillage, reduced tillage, and no tillage). METHODS: Human exposure (operators and residents) and health risks from pesticide use were assessed and compared between three conventional and six innovative cropping systems. We used the previously published BROWSE (Bystanders, Residents, Operators, and WorkerS Exposure) model based on data collected from interviews with the farmers and expert knowledge to compare the human health risk from pesticide use in the Setif area. Environmental conditions and the physical characteristics of the farmers were collected on three different farms from 2019 to 2021. RESULTS: The modelling results demonstrate that human exposure to pesticides was systematically high under conservation tillage (no or reduced tillage) and monoculture cropping (pea and barley) conditions. It was also confirmed that operators experienced the highest cumulated exposure to pesticides (56 mg kg-1 bw day-1), followed by resident children seven days after pesticide application (0.66 mg kg-1 bw day-1). BROWSE simulations showed that dermal absorption was the most dominant route and represented more than 98% of the total amount of pesticides applied in all cropping × tillage system combinations. Regarding the overall results of the simulated human health risk, barley-pea intercropping was the most interesting system to reduce the risks for both operators and residents for all tillage practices. In addition, intercropping combined with conventional tillage was the most sustainable cropping system in terms of both agronomic performance (crop yield, Land Equivalent Ratio) and human health risk. Furthermore, the availability of advanced crop protection equipment was associated with a significant decrease in exposure and human health risk for both operators and residents. CONCLUSIONS: The prediction of human health risks using BROWSE could help farmers to make the decision to adopt conventional barley-pea intercropping as a good alternative to barley monocultures and pea monocultures under conservation tillage.


Subject(s)
Fabaceae , Hordeum , Pesticides , Agriculture/methods , Child , Edible Grain/chemistry , Farms , Humans , Pesticides/analysis , Pesticides/toxicity , Vegetables
3.
Environ Int ; 105: 66-78, 2017 08.
Article in English | MEDLINE | ID: mdl-28521191

ABSTRACT

BACKGROUND: Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem. OBJECTIVES: The objectives of this work were to assess and to compare (1) the human exposure to pesticides used in conventional and innovative cropping systems designed to reduce pesticide needs, and (2) the corresponding risks for human health. METHODS: Humans (operator and residents) exposure to pesticides and risks for human health were assessed for each pesticide with the BROWSE model. Then, a method was proposed to represent the overall risk due to all pesticides used in one system. This study considers 3 conventional and 9 associated innovative cropping systems, and 116 plant protection products containing 89 different active substances (i.e. pesticides). RESULTS: The modelling results obtained with BROWSE showed that innovative cropping systems such as low input or no herbicide systems would reduce the risk for human health in comparison to the corresponding conventional cropping systems. On the contrary, BROWSE showed that conservation tillage system would lead to unacceptable risks in the conditions of our study, because of a high number of pesticide applications, and especially of some herbicides. For residents, the dermal absorption was the main exposure route while ingestion was found to be negligible. For operators, inhalation was also a predominant route of exposure. In general, human exposure to pesticides and human health risks were found to be correlated to the treatment frequency index TFI (number of registered doses of pesticides used per hectare for one copping season), confirming the relationship between the reduction of pesticide use and the reduction of risks. CONCLUSIONS: Assessment with the BROWSE model helped to identify cropping systems with decreased risks from pesticides for human health and to propose some improvements to the cropping systems by identifying the pesticides that led to unacceptable risks.


Subject(s)
Agriculture/methods , Models, Theoretical , Pesticides/adverse effects , Adult , Agriculture/standards , Child , Crops, Agricultural , Environment , Environmental Exposure/adverse effects , Environmental Exposure/analysis , France , Humans , Risk Assessment/methods
4.
Environ Sci Pollut Res Int ; 24(8): 6895-6909, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27194012

ABSTRACT

The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Models, Theoretical , Pesticides/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Climate , France , Soil/chemistry
5.
Sci Total Environ ; 580: 117-129, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27986318

ABSTRACT

STICS-MACRO is a process-based model simulating the fate of pesticides in the soil-plant system as a function of agricultural practices and pedoclimatic conditions. The objective of this work was to evaluate the influence of crop management practices on water and pesticide flows in contrasted environmental conditions. We used the Morris screening sensitivity analysis method to identify the most influential cropping practices. Crop residues management and tillage practices were shown to have strong effects on water percolation and pesticide leaching. In particular, the amount of organic residues added to soil was found to be the most influential input. The presence of a mulch could increase soil water content so water percolation and pesticide leaching. Conventional tillage was also found to decrease pesticide leaching, compared to no-till, which is consistent with many field observations. The effects of the soil, crop and climate conditions tested in this work were less important than those of cropping practices. STICS-MACRO allows an ex ante evaluation of cropping systems and agricultural practices, and of the related pesticides environmental impacts.


Subject(s)
Agriculture/methods , Models, Chemical , Pesticides , Soil Pollutants , Environment , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...