Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1289449, 2023.
Article in English | MEDLINE | ID: mdl-38149008

ABSTRACT

Bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is a common coinfection with Chlamydia trachomatis (Ct), and BV-associated bacteria (BVAB) and their products have been implicated in aiding Ct evade natural immunity. Here, we determined if a non-optimal vaginal microbiota was associated with a higher genital Ct burden and if metronidazole, a standard treatment for BV, would reduce Ct burden or aid in natural clearance of Ct infection. Cervicovaginal samples were collected from women at enrollment and, if testing positive for Ct infection, at a follow-up visit approximately one week later. Cervical Ct burden was assessed by inclusion forming units (IFU) and Ct genome copy number (GCN), and 16S rRNA gene sequencing was used to determine the composition of the vaginal microbiota. We observed a six-log spectrum of IFU and an eight-log spectrum of GCN in our study participants at their enrollment visit, but BV, as indicated by Amsel's criteria, Nugent scoring, or VALENCIA community state typing, did not predict infectious and total Ct burden, although IFU : GCN increased with Amsel and Nugent scores and in BV-like community state types. Ct burden was, however, associated with the abundance of bacterial species in the vaginal microbiota, negatively with Lactobacillus crispatus and positively with Prevotella bivia. Women diagnosed with BV were treated with metronidazole, and Ct burden was significantly reduced in those who resolved BV with treatment. A subset of women naturally cleared Ct infection in the interim, typified by low Ct burden at enrollment and resolution of BV. Abundance of many BVAB decreased, and Lactobacillus increased, in response to metronidazole treatment, but no changes in abundances of specific vaginal bacteria were unique to women who spontaneously cleared Ct infection.


Subject(s)
Microbiota , Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/diagnosis , Metronidazole/pharmacology , Metronidazole/therapeutic use , Chlamydia trachomatis/genetics , RNA, Ribosomal, 16S/genetics , Vagina/microbiology
2.
Sex Transm Dis ; 50(8): 523-530, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37074327

ABSTRACT

BACKGROUND: Despite more than 60 years of research, the etiology of bacterial vaginosis (BV) remains controversial. In this pilot study, we used shotgun metagenomic sequencing to characterize vaginal microbial community changes before the development of incident BV (iBV). METHODS: A cohort of African American women with a baseline healthy vaginal microbiome (no Amsel criteria, Nugent score 0-3 with no Gardnerella vaginalis morphotypes) were followed for 90 days with daily self-collected vaginal specimens for iBV (≥2 consecutive days of a Nugent score of 7-10). Shotgun metagenomic sequencing was performed on select vaginal specimens from 4 women, every other day for 12 days before iBV diagnosis. Sequencing data were analyzed through Kraken2 and bioBakery 3 workflows, and specimens were classified into community state types. Quantitative polymerase chain reaction was performed to compare the correlation of read counts with bacterial abundance. RESULTS: Common BV-associated bacteria such as G. vaginalis , Prevotella bivia , and Fannyhessea vaginae were increasingly identified in the participants before iBV. Linear modeling indicated significant increases in G. vaginalis and F . vaginae relative abundance before iBV, whereas the relative abundance of Lactobacillus species declined over time. The Lactobacillus species decline correlated with the presence of Lactobacillus phages. We observed enrichment in bacterial adhesion factor genes on days before iBV. There were also significant correlations between bacterial read counts and abundances measured by quantitative polymerase chain reaction. CONCLUSIONS: This pilot study characterizes vaginal community dynamics before iBV and identifies key bacterial taxa and mechanisms potentially involved in the pathogenesis of iBV.


Subject(s)
Microbiota , Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/diagnosis , Pilot Projects , Vagina/microbiology , Gardnerella vaginalis/genetics , Bacteria/genetics , Lactobacillus/genetics
3.
Elife ; 112022 12 14.
Article in English | MEDLINE | ID: mdl-36515265

ABSTRACT

Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.


Subject(s)
Adaptation, Physiological , Myocytes, Cardiac , Stress, Physiological , Animals , Mice , Heart Failure/genetics , Heart Failure/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy/physiopathology , Mice, Transgenic , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...