Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 112(4): 722-7, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18177027

ABSTRACT

An ab initio study of the interactions between H2O and Cl2+ and H2O and Br2+ has been performed. We present calculations using both the UMP2 level and the UCCSD(T) level of correlation with the aug-cc-pVTZ basis. The aug-cc-pVQZ basis was tested for selected geometries and was found to yield results similar to the smaller basis. For the H2O-Cl2+ cation, a C2v structure has been identified as the minimum, with De = 6500 cm-1 (78 kJ/mol). A low-lying excited state has De = 6000 cm-1 (72 kJ/mol). The adiabatic and vertical ionization energies of the complex are 10.7 and 11.0 eV, compared to the experimental adiabatic value, 11.5 eV, for free chlorine. For the H2O-Br2+ cation, the calculations are more subtle due to second-order Jahn-Teller effects and result in a Cs structure at the minimum, with De = 6300 cm-1 (75 kJ/mol), yielding an adiabatic ionization energy of 9.9 eV compared to the corresponding experimental value, 10.5 eV, for free bromine. The relatively large binding energies give rise to strong normal mode couplings such that the halogen stretching mode becomes mixed with the water bending and other intermolecular modes, resulting in very large frequency shifts. Vertical ionization energies and ion vibrational frequencies also are reported and used to discuss possible experiments to obtain more precise data for each of the complexes.


Subject(s)
Bromine/chemistry , Chlorine/chemistry , Models, Chemical , Quantum Theory , Water/chemistry , Computer Simulation , Dimerization , Hydrophobic and Hydrophilic Interactions
2.
Proc Natl Acad Sci U S A ; 102(39): 13743-8, 2005 Sep 27.
Article in English | MEDLINE | ID: mdl-16174731

ABSTRACT

Kinetic modeling using nonlinear differential equations is proposed to analyze the spontaneous generation of enantiomeric excess in the autocatalytic addition of diisopropylzinc to prochiral pyrimidine carbaldehydes (Soai reaction). Our approach reproduces experimentally observed giant chiral amplification from an initial enantiomeric excess of <10(-6)% to >60%, high sensitivity and positive response to the presence of minute amounts of chiral initiator at concentrations <10(-14) M, and spontaneous absolute asymmetric synthesis from achiral starting conditions. From our numerical simulations using kinetic schemes derived from the Frank model, including stereospecific autocatalysis and mutual inhibition, we have shown that it is possible to reproduce the mirror-symmetry-breaking behavior of the Soai reaction under batch conditions leading to a bimodal enantiomeric product distribution. Mirror-symmetry breaking was found to be resistant to a loss of stereoselectivity up to 30%. While the mutual inhibition between enantiomers seems to originate from the presence of dimerization equilibria, the exact nature of the autocatalytic stereoselective process still remains to be revealed. From the kinetic viewpoint, simple autocatalysis involving monomers as the catalytic species is consistent with all reported experimental effects of the Soai reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...