Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 98(1): 433-42, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17522173

ABSTRACT

The purpose of this study was to investigate whether the gating of interlimb cutaneous reflexes is altered by holding an earth-referenced handrail during locomotion. In the first experiment, subjects performed locomotor tasks of varying difficulty (level walking, incline walking, and stair climbing) while lightly holding an earth-referenced rail. In the second experiment, the extent of rail contact and nature of the rail stability (e.g., fixed vs. mobile rail) were varied while subjects performed incline walking. Cutaneous reflexes were evoked by delivering trains of electrical stimulation to the sural nerve at the ankle. EMG data were collected continuously from muscles in the upper and lower limbs and trunk. Results showed that modulation of reflexes across the body changed when the rail was held. Most interestingly, a facilitatory reflex in the shoulder extensor posterior deltoid emerged during swing phase only when subjects held a rail. This facilitatory reflex was largest during the more challenging tasks of incline walking and stair climbing, A similar reflex facilitation was observed in the elbow extensor triceps brachii. The observed facilitation of reflexes in triceps brachii and posterior deltoid was specifically expressed only when subjects held an earth-referenced rail. This suggests that interlimb reflexes in arm extensors may be enhanced to make use of a supportive handrail for stability during gait. Therefore, holding a rail may cause global changes in reflex thresholds across the body that may have widespread functional relevance for assisting in the maintenance of postural stability during locomotion.


Subject(s)
Extremities/physiology , Locomotion/physiology , Psychomotor Performance/physiology , Reflex/physiology , Skin Physiological Phenomena , Adult , Biomechanical Phenomena , Electric Stimulation/methods , Electromyography/methods , Female , Functional Laterality , Humans , Male , Posture , Reaction Time/physiology
2.
Exp Brain Res ; 173(1): 185-92, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16821052

ABSTRACT

Reflexes are exquisitely sensitive to the motor task that is being performed at the time they are evoked; in other words, they are "task-dependent". The purpose of this study was to investigate the extent to which the pattern of reflex modulation is conserved across three locomotor tasks that differ in muscle activity, joint kinematics, and stability demands. Subjects performed continuous level and incline walking on a treadmill and stair climbing on a stepping mill. Cutaneous reflexes were evoked by delivering trains of electrical stimulation to the sural nerve at the ankle at an intensity of two times the radiating threshold. Electromyographic (EMG) recordings were collected continuously from muscles in the arms, legs and trunk. Results showed that middle-latency reflex modulation patterns were generally conserved across the three locomotor tasks with a few notable exceptions related to specific functional requirements. For example, a reflex reversal was observed for tibialis anterior during stair climbing, which may be indicative of a specific adaptation to the task constraints. Overall our data suggest that the underlying neural mechanisms involved in coordinating level walking can be modified to also coordinate other locomotor tasks such as incline walking and stair climbing. Therefore, there may be considerable overlap in the neural control of different forms of locomotion.


Subject(s)
Gait/physiology , Posture/physiology , Psychomotor Performance/physiology , Reflex/physiology , Skin Physiological Phenomena , Walking/physiology , Adult , Analysis of Variance , Biomechanical Phenomena , Electric Stimulation/methods , Electromyography/methods , Female , Functional Laterality , Humans , Male , Reaction Time/physiology
3.
J Neurosci ; 25(29): 6869-76, 2005 Jul 20.
Article in English | MEDLINE | ID: mdl-16033896

ABSTRACT

The behavior of the pattern generator for walking in human infants (7-12 months of age) was studied by supporting the infants to step on a split-belt treadmill. The treadmill belts could be run at the same speed (tied-belt), different speeds, or in different directions (split-belt). We determined whether the legs could operate independently under these conditions, as demonstrated by taking different numbers of steps or by stepping in different directions. Video, surface electromyography, electrogoniometry, and force platform data were recorded. The majority of infants who could step under tied-belt conditions also stepped under split-belt conditions. During forward stepping at low speed differentials between the two belts (ratio, <4), infants adopted a step cycle duration that was intermediate between that expected from tied-belt stepping at each of the speeds. At large speed differentials between the two belts (ratio, 7-22), the infants took extra steps on the fast leg during the stance phase on the slow leg. When the two belts ran in opposite directions, one leg stepped forward, and the other stepped backward. During all forms of stepping, the legs maintained a reciprocal relationship, so that swing phase occurred in one leg at a time. Timing of muscle activity suggests a strong inhibition between the flexor-generating centers on each side and a weaker inhibition between the extensor-generating centers. The stepping behavior resembled that reported for other animals under similar conditions, suggesting that the pattern generator for each limb is autonomous but interacts with its counterpart for the contralateral limb.


Subject(s)
Functional Laterality/physiology , Gait/physiology , Leg/innervation , Leg/physiology , Spinal Cord/physiology , Electromyography , Humans , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...