Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 563, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740899

ABSTRACT

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Subject(s)
Estrogen Receptor alpha , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein , Humans , Estrogen Receptor alpha/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Female , Proteolysis/drug effects , Animals , Administration, Oral , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
2.
RSC Med Chem ; 15(4): 1085-1095, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665822

ABSTRACT

AstraZeneca chemists have been using the AI retrosynthesis tool AiZynth for three years. In this article, we present seven examples of how medicinal chemists using AiZynth positively impacted their drug discovery programmes. These programmes run the gamut from early-stage hit confirmation to late-stage route optimisation efforts. We also discuss the different use cases for which AI retrosynthesis tools are best suited.

3.
J Med Chem ; 67(6): 4541-4559, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38466661

ABSTRACT

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.


Subject(s)
Neoplasms , Humans , Entropy , Methionine Adenosyltransferase/metabolism
4.
J Med Chem ; 66(13): 9147-9160, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37395055

ABSTRACT

The glycine to cysteine mutation at codon 12 of Kirsten rat sarcoma (KRAS) represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 14, AZD4747, a clinical development candidate for the treatment of KRASG12C-positive tumors, including the treatment of central nervous system (CNS) metastases. Building on our earlier discovery of C5-tethered quinazoline AZD4625, excision of a usually critical pyrimidine ring yielded a weak but brain-penetrant start point which was optimized for potency and DMPK. Key design principles and measured parameters that give high confidence in CNS exposure are discussed. During optimization, divergence between rodent and non-rodent species was observed in CNS exposure, with primate PET studies ultimately giving high confidence in the expected translation to patients. AZD4747 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Neoplasms , Animals , Humans , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/drug therapy , Drug Design , Glycine/therapeutic use , Mutation , Lung Neoplasms/drug therapy
5.
ACS Chem Biol ; 18(2): 296-303, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36602435

ABSTRACT

Lactic acid transport is a key process maintaining glycolytic flux in tumors. Inhibition of this process will result in glycolytic shutdown, impacting on cell growth and survival and thus has been pursued as a therapeutic approach for cancers. Using a cell-based screen in a MCT4-dependent cell line, we identified and optimized compounds for their ability to inhibit the efflux of intracellular lactic acid with good physical and pharmacokinetic properties. To deconvolute the mechanism of lactic acid efflux inhibition, we have developed three assays to measure cellular target engagement. Specifically, we synthesized a biologically active photoaffinity probe (IC50 < 10 nM), and using this probe, we demonstrated selective engagement of MCT4 of our parent molecule through a combination of confocal microscopy and in-cell chemoproteomics. As an orthogonal assay, the cellular thermal shift assay (CETSA) confirmed binding to MCT4 in the cellular system. Comparisons of lactic acid efflux potencies in cells with differential expression of MCT family members further confirmed that the optimized compounds inhibit the efflux of lactic acid through the inhibition of MCT4. Taken together, these data demonstrate the power of orthogonal chemical biology methods to determine cellular target engagement, particularly for proteins not readily amenable to traditional biophysical methods.


Subject(s)
Biology , Lactic Acid , Lactic Acid/metabolism , Biological Transport , Cell Line, Tumor , Cell Proliferation
6.
J Med Chem ; 66(1): 384-397, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36525250

ABSTRACT

Due to increased reliance on glycolysis, which produces lactate, monocarboxylate transporters (MCTs) are often upregulated in cancer. MCT4 is associated with the export of lactic acid from cancer cells under hypoxia, so inhibition of MCT4 may lead to cytotoxic levels of intracellular lactate. In addition, tumor-derived lactate is known to be immunosuppressive, so MCT4 inhibition may be of interest for immuno-oncology. At the outset, no potent and selective MCT4 inhibitors had been reported, but a screen identified a triazolopyrimidine hit, with no close structural analogues. Minor modifications to the triazolopyrimidine were made, alongside design of a constrained linker and broad SAR exploration of the biaryl tail to improve potency, physical properties, PK, and hERG. The resulting clinical candidate 15 (AZD0095) has excellent potency (1.3 nM), MCT1 selectivity (>1000×), secondary pharmacology, clean mechanism of action, suitable properties for oral administration in the clinic, and good preclinical efficacy in combination with cediranib.


Subject(s)
Antineoplastic Agents , Neoplasms , Symporters , Humans , Lactic Acid , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Hypoxia , Monocarboxylic Acid Transporters
7.
ACS Med Chem Lett ; 13(8): 1295-1301, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35978693

ABSTRACT

The DNA-PK complex is activated by double-strand DNA breaks and regulates the non-homologous end-joining repair pathway; thus, targeting DNA-PK by inhibiting the DNA-PK catalytic subunit (DNA-PKcs) is potentially a useful therapeutic approach for oncology. A previously reported series of neutral DNA-PKcs inhibitors were modified to incorporate a basic group, with the rationale that increasing the volume of distribution while maintaining good metabolic stability should increase the half-life. However, adding a basic group introduced hERG activity, and basic compounds with modest hERG activity (IC50 = 10-15 µM) prolonged QTc (time from the start of the Q wave to the end of the T wave, corrected by heart rate) in an anaesthetized guinea pig cardiovascular model. Further optimization was necessary, including modulation of pK a, to identify compound 18, which combines low hERG activity (IC50 = 75 µM) with excellent kinome selectivity and favorable pharmacokinetic properties.

8.
J Med Chem ; 65(9): 6940-6952, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35471939

ABSTRACT

KRAS is an archetypal high-value intractable oncology drug target. The glycine to cysteine mutation at codon 12 represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 21, AZD4625, a clinical development candidate for the treatment of KRASG12C positive tumors. Highlights include a quinazoline tethering strategy to lock out a bio-relevant binding conformation and an optimization strategy focused on the reduction of extrahepatic clearance mechanisms seen in preclinical species. Crystallographic analysis was also key in helping to rationalize unusual structure-activity relationship in terms of ring size and enantio-preference. AZD4625 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/pharmacology , Drug Design , Humans , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/pharmacology , Structure-Activity Relationship
9.
J Med Chem ; 63(7): 3461-3471, 2020 04 09.
Article in English | MEDLINE | ID: mdl-31851518

ABSTRACT

DNA-PK is a key component within the DNA damage response, as it is responsible for recognizing and repairing double-strand DNA breaks (DSBs) via non-homologous end joining. Historically it has been challenging to identify inhibitors of the DNA-PK catalytic subunit (DNA-PKcs) with good selectivity versus the structurally related PI3 (lipid) and PI3K-related protein kinases. We screened our corporate collection for DNA-PKcs inhibitors with good PI3 kinase selectivity, identifying compound 1. Optimization focused on further improving selectivity while improving physical and pharmacokinetic properties, notably co-optimization of permeability and metabolic stability, to identify compound 16 (AZD7648). Compound 16 had no significant off-target activity in the protein kinome and only weak activity versus PI3Kα/γ lipid kinases. Monotherapy activity in murine xenograft models was observed, and regressions were observed when combined with inducers of DSBs (doxorubicin or irradiation) or PARP inhibition (olaparib). These data support progression into clinical studies (NCT03907969).


Subject(s)
DNA-Activated Protein Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Purines/therapeutic use , Pyrans/therapeutic use , Triazoles/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Dogs , Drug Discovery , Humans , Mice , Molecular Structure , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Purines/chemical synthesis , Purines/pharmacokinetics , Pyrans/chemical synthesis , Pyrans/pharmacokinetics , Rats , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Xenograft Model Antitumor Assays
10.
Nat Commun ; 10(1): 5065, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31699977

ABSTRACT

DNA-dependent protein kinase (DNA-PK) is a critical player in the DNA damage response (DDR) and instrumental in the non-homologous end-joining pathway (NHEJ) used to detect and repair DNA double-strand breaks (DSBs). We demonstrate that the potent and highly selective DNA-PK inhibitor, AZD7648, is an efficient sensitizer of radiation- and doxorubicin-induced DNA damage, with combinations in xenograft and patient-derived xenograft (PDX) models inducing sustained regressions. Using ATM-deficient cells, we demonstrate that AZD7648, in combination with the PARP inhibitor olaparib, increases genomic instability, resulting in cell growth inhibition and apoptosis. AZD7648 enhanced olaparib efficacy across a range of doses and schedules in xenograft and PDX models, enabling sustained tumour regression and providing a clear rationale for its clinical investigation. Through its differentiated mechanism of action as an NHEJ inhibitor, AZD7648 complements the current armamentarium of DDR-targeted agents and has potential in combination with these agents to achieve deeper responses to current therapies.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , DNA-Activated Protein Kinase/antagonists & inhibitors , Drug Synergism , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrans/pharmacology , Radiation Tolerance/drug effects , Triazoles/pharmacology , A549 Cells , Animals , Antibiotics, Antineoplastic/pharmacology , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Genomic Instability/drug effects , Humans , Lung Neoplasms , Mice , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Polyethylene Glycols/pharmacology , Radiotherapy , Xenograft Model Antitumor Assays
11.
ACS Med Chem Lett ; 7(12): 1118-1123, 2016 Dec 08.
Article in English | MEDLINE | ID: mdl-27994749

ABSTRACT

Group I p21-activated kinase (PAK) inhibitors are indicated as important in cancer progression, but achieving high kinase selectivity has been challenging. A bis-anilino pyrimidine PAK1 inhibitor was identified and optimized through structure-based drug design to improve PAK1 potency and achieve high kinase selectivity, giving in vitro probe compound AZ13705339 (18). Reduction of lipophilicity to lower clearance afforded AZ13711265 (14) as an in vivo probe compound with oral exposure in mouse. Such probes will allow further investigation of PAK1 biology.

13.
J Med Chem ; 58(8): 3522-33, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25790336

ABSTRACT

A novel estrogen receptor down-regulator, 7-hydroxycoumarin (5, SS5020), has been reported with antitumor effects against chemically induced mammary tumors. Here, we report on our own investigation of 7-hydroxycoumarins as potential selective estrogen receptor down-regulators, which led us to the discovery of potent down-regulating antagonists, such as 33. Subsequent optimization and removal of the 7-hydroxy group led to coumarin 59, which had increased potency and improved rat bioavailability relative to SS5020.


Subject(s)
Estrogen Receptor alpha/metabolism , Umbelliferones/chemistry , Umbelliferones/pharmacology , Administration, Oral , Animals , Cell Line, Tumor , Coumarins/chemistry , Coumarins/pharmacokinetics , Coumarins/pharmacology , Down-Regulation/drug effects , Estrogen Receptor alpha/analysis , Humans , Molecular Docking Simulation , Rats , Umbelliferones/pharmacokinetics
14.
J Med Chem ; 57(20): 8249-67, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25271963

ABSTRACT

Epidermal growth factor receptor (EGFR) inhibitors have been used clinically in the treatment of non-small-cell lung cancer (NSCLC) patients harboring sensitizing (or activating) mutations for a number of years. Despite encouraging clinical efficacy with these agents, in many patients resistance develops leading to disease progression. In most cases, this resistance is in the form of the T790M mutation. In addition, EGFR wild type receptor inhibition inherent with these agents can lead to dose limiting toxicities of rash and diarrhea. We describe herein the evolution of an early, mutant selective lead to the clinical candidate AZD9291, an irreversible inhibitor of both EGFR sensitizing (EGFRm+) and T790M resistance mutations with selectivity over the wild type form of the receptor. Following observations of significant tumor inhibition in preclinical models, the clinical candidate was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, accompanied by an encouraging safety profile.


Subject(s)
Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/genetics , Chemistry Techniques, Synthetic , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , Female , Humans , Inhibitory Concentration 50 , Lung Neoplasms/genetics , Male , Mice , Middle Aged , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats, Inbred Strains , Xenograft Model Antitumor Assays
15.
J Org Chem ; 79(16): 7682-8, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25050640

ABSTRACT

A new synthetic route to 3-(heteroaryl) tetrahydropyrazolo[3,4-c]pyridines has been developed that uses the Suzuki-Miyaura cross-coupling of a triflate 6 with (hetero)aryl boronic acids or esters. Using Pd(OAc)2 and XPhos or an XPhos precatalyst, a diverse range of substituents at the C3 position of the tetrahydropyrazolo[3,4-c]pyridine skeleton were prepared. The use of pivaloyloxymethyl and benzyl protection also offers the potential to differentially functionalize the pyrazole and tetrahydropyridine nitrogens.


Subject(s)
Benzyl Compounds/chemistry , Palladium/chemistry , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyridines/chemistry , Pyridines/chemical synthesis , Catalysis , Esters , Molecular Structure
16.
J Med Chem ; 56(5): 2059-73, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23394218

ABSTRACT

Wide-ranging exploration of analogues of an ATP-competitive pyrrolopyrimidine inhibitor of Akt led to the discovery of clinical candidate AZD5363, which showed increased potency, reduced hERG affinity, and higher selectivity against the closely related AGC kinase ROCK. This compound demonstrated good preclinical drug metabolism and pharmacokinetics (DMPK) properties and, after oral dosing, showed pharmacodynamic knockdown of phosphorylation of Akt and downstream biomarkers in vivo, and inhibition of tumor growth in a breast cancer xenograft model.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Cell Line, Tumor , Female , Humans , Inhibitory Concentration 50 , Models, Molecular , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
17.
Bioorg Med Chem Lett ; 22(12): 4163-8, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22607682

ABSTRACT

High throughput screening to identify inhibitors of the mTOR kinase revealed sulfonyl-morpholino-pyrimidine 1 as an attractive start point. The compound displayed good physicochemical properties and selectivity over related kinases such as PI3Kα. Library preparation of related analogs allowed the establishment of additional SAR understanding and in particular the requirement for a key hydrogen bond donor motif at the 4-position of the phenyl ring in compounds such as indole 19. Isosteric replacement of the indole functionality led to the identification of urea compounds such as 32 that show good levels of mTOR inhibition in both enzyme and cellular assays.


Subject(s)
Antineoplastic Agents/chemical synthesis , Morpholines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Sulfones/chemical synthesis , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Humans , Hydrogen Bonding , Indoles/chemistry , Inhibitory Concentration 50 , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Sulfones/pharmacology , TOR Serine-Threonine Kinases/chemistry , Urea/analogs & derivatives , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...