Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Genet Med ; 25(9): 100897, 2023 09.
Article in English | MEDLINE | ID: mdl-37191094

ABSTRACT

PURPOSE: Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)-associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype. METHODS: This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy. RESULTS: All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family. CONCLUSION: Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings.


Subject(s)
Acute Febrile Encephalopathy , Brain Diseases , Leukoencephalitis, Acute Hemorrhagic , Child , Humans , Leukoencephalitis, Acute Hemorrhagic/diagnosis , Leukoencephalitis, Acute Hemorrhagic/genetics , Inflammasomes , Brain Diseases/genetics , Transcription Factors , Ribonucleases , Carrier Proteins
2.
G3 (Bethesda) ; 12(5)2022 05 06.
Article in English | MEDLINE | ID: mdl-35325113

ABSTRACT

Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.


Subject(s)
RNA Splicing , Zebrafish , Alternative Splicing , Animals , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA/metabolism , RNA Splicing/genetics , Zebrafish/genetics , Zebrafish/metabolism
3.
J Med Genet ; 59(6): 571-578, 2022 06.
Article in English | MEDLINE | ID: mdl-33875564

ABSTRACT

BACKGROUND: This study aimed to identify and resolve discordant variant interpretations across clinical molecular genetic laboratories through the Canadian Open Genetics Repository (COGR), an online collaborative effort for variant sharing and interpretation. METHODS: Laboratories uploaded variant data to the Franklin Genoox platform. Reports were issued to each laboratory, summarising variants where conflicting classifications with another laboratory were noted. Laboratories could then reassess variants to resolve discordances. Discordance was calculated using a five-tier model (pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), likely benign (LB), benign (B)), a three-tier model (LP/P are positive, VUS are inconclusive, LB/B are negative) and a two-tier model (LP/P are clinically actionable, VUS/LB/B are not). We compared the COGR classifications to automated classifications generated by Franklin. RESULTS: Twelve laboratories submitted classifications for 44 510 unique variants. 2419 variants (5.4%) were classified by two or more laboratories. From baseline to after reassessment, the number of discordant variants decreased from 833 (34.4% of variants reported by two or more laboratories) to 723 (29.9%) based on the five-tier model, 403 (16.7%) to 279 (11.5%) based on the three-tier model and 77 (3.2%) to 37 (1.5%) based on the two-tier model. Compared with the COGR classification, the automated Franklin classifications had 94.5% sensitivity and 96.6% specificity for identifying actionable (P or LP) variants. CONCLUSIONS: The COGR provides a standardised mechanism for laboratories to identify discordant variant interpretations and reduce discordance in genetic test result delivery. Such quality assurance programmes are important as genetic testing is implemented more widely in clinical care.


Subject(s)
Genetic Variation , Laboratories , Canada , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Information Dissemination/methods
4.
Int J Neonatal Screen ; 7(4)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34842602

ABSTRACT

Sickle cell disease (SCD), a group of inherited red blood cell (RBC) disorders caused by pathogenic variants in the beta-globin gene (HBB), can cause lifelong disabilities and/or early mortality. If diagnosed early, preventative measures significantly reduce adverse outcomes related to SCD. In Alberta, Canada, SCD was added to the newborn screening (NBS) panel in April 2019. The primary conditions screened for are sickle cell anemia (HbS/S), HbS/C disease, and HbS/ß thalassemia. In this study, we retrospectively analyzed the first 19 months of SCD screening performance, as well as described our approach for screening of infants that have received a red blood cell transfusion prior to collection of NBS specimen. Hemoglobins eluted from dried blood spots were analyzed using the Bio-Rad™ VARIANT nbs analyzer (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Targeted sequencing of HBB was performed concurrently in samples from all transfused infants. During the period of this study, 43 of 80,314 screened infants received a positive NBS result for SCD, and of these, 34 were confirmed by diagnostic testing, suggesting a local SCD incidence of 1:2400 births. There were 608 infants with sickle cell trait, resulting in a carrier frequency of 1:130. Over 98% of non-transfused infants received their NBS results within 10 days of age. Most of the 188 transfused infants and 2 infants who received intrauterine transfusions received their final SCD screen results within 21 ± 10 d of birth. Our SCD screening algorithm enables detection of affected newborns on the initial NBS specimen, independent of the reported blood transfusion status.

5.
Hum Mol Genet ; 29(20): 3388-3401, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33073849

ABSTRACT

Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein essential for cell polarity, fate and survival. Defects in cell polarity are associated with neurologic disorders including autism and microcephaly. MPP5 is essential for neurogenesis in animal models, but human variants leading to neurologic impairment have not been described. We identified three patients with heterozygous MPP5 de novo variants (DNV) and global developmental delay (GDD) and compared their phenotypes and magnetic resonance imaging (MRI) to ascertain how MPP5 DNV leads to GDD. All three patients with MPP5 DNV experienced GDD with language delay/regression and behavioral changes. MRI ranged from normal to decreased gyral folding and microcephaly. The effects of MPP5 depletion on the developing brain were assessed by creating a heterozygous conditional knock out (het CKO) murine model with central nervous system (CNS)-specific Nestin-Cre drivers. In the het CKO model, Mpp5 depletion led to microcephaly, decreased cerebellar volume and cortical thickness. Het CKO mice had decreased ependymal cells and Mpp5 at the apical surface of cortical ventricular zone compared with wild type. Het CKO mice also failed to maintain progenitor pools essential for neurogenesis. The proportion of cortical cells undergoing apoptotic cell death increased, suggesting that cell death reduces progenitor population and neuron number. Het CKO mice also showed behavioral changes, similar to our patients. To our knowledge, this is the first report to show that variants in MPP5 are associated with GDD, behavioral abnormalities and language regression/delay. Murine modeling shows that neurogenesis is likely altered in these individuals, with cell death and skewed cellular composition playing significant roles.


Subject(s)
Developmental Disabilities/etiology , Membrane Proteins/genetics , Membrane Proteins/physiology , Mutation , Nervous System Diseases/etiology , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/physiology , Adolescent , Adult , Animals , Child , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Young Adult
6.
Ann Clin Transl Neurol ; 6(8): 1395-1406, 2019 08.
Article in English | MEDLINE | ID: mdl-31402629

ABSTRACT

OBJECTIVE: To characterize the molecular and clinical phenotypic basis of developmental and epileptic encephalopathies caused by rare biallelic variants in CACNA2D2. METHODS: Two affected individuals from a family with clinical features of early onset epileptic encephalopathy were recruited for exome sequencing at the Centers for Mendelian Genomics to identify their molecular diagnosis. GeneMatcher facilitated identification of a second family with a shared candidate disease gene identified through clinical gene panel-based testing. RESULTS: Rare biallelic CACNA2D2 variants have been previously reported in three families with developmental and epileptic encephalopathy, and one family with congenital ataxia. We identified three individuals in two unrelated families with novel homozygous rare variants in CACNA2D2 with clinical features of developmental and epileptic encephalopathy and cerebellar atrophy. Family 1 includes two affected siblings with a likely damaging homozygous rare missense variant c.1778G>C; p.(Arg593Pro) in CACNA2D2. Family 2 includes a proband with a homozygous rare nonsense variant c.485_486del; p.(Tyr162Ter) in CACNA2D2. We compared clinical and molecular findings from all nine individuals reported to date and note that cerebellar atrophy is shared among all. INTERPRETATION: Our study supports the candidacy of CACNA2D2 as a disease gene associated with a phenotypic spectrum of neurological disease that include features of developmental and epileptic encephalopathy, ataxia, and cerebellar atrophy. Age at presentation may affect apparent penetrance of neurogenetic trait manifestations and of a particular clinical neurological endophenotype, for example, seizures or ataxia.


Subject(s)
Calcium Channels/genetics , Cerebellar Diseases/genetics , Epilepsy/genetics , Spasms, Infantile/genetics , Adult , Atrophy , Cerebellar Ataxia/genetics , Female , Humans , Male , Mutation, Missense , Pedigree , Seizures , Siblings
7.
Life Sci Alliance ; 2(2)2019 04.
Article in English | MEDLINE | ID: mdl-30858161

ABSTRACT

Exome sequencing of two sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene, encoding the phosphatidylserine decarboxylase enzyme that converts phosphatidylserine to phosphatidylethanolamine (PE) in the inner mitochondrial membrane (IMM). Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. Meanwhile, as evidence for mitochondrial dysfunction, patient fibroblasts exhibited more fragmented mitochondrial networks, enlarged lysosomes, decreased maximal oxygen consumption rates, and increased sensitivity to 2-deoxyglucose. Moreover, treatment with lyso-PE, which can replenish the mitochondrial pool of PE, and genetic complementation restored mitochondrial and lysosome morphology in patient fibroblasts. Functional characterization of the PISD variants demonstrates that the maternal variant causes an alternative splice product. Meanwhile, the paternal variant impairs autocatalytic self-processing of the PISD protein required for its activity. Finally, evidence for impaired activity of mitochondrial IMM proteases suggests an explanation as to why the phenotypes of these PISD patients resemble recently described "mitochondrial chaperonopathies." Collectively, these findings demonstrate that PISD is a novel mitochondrial disease gene.


Subject(s)
Carboxy-Lyases/genetics , Cataract/genetics , Mitochondrial Diseases/enzymology , Musculoskeletal Abnormalities/genetics , White Matter/pathology , Adult , Carboxy-Lyases/metabolism , Female , Fibroblasts/metabolism , Genes, Mitochondrial/genetics , HEK293 Cells , Homeostasis/genetics , Humans , Mitochondria/enzymology , Mitochondrial Diseases/blood , Mitochondrial Diseases/pathology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Phenotype , RNA Splice Sites/genetics , Saccharomyces cerevisiae/enzymology , Transfection , Exome Sequencing
8.
Eur J Hum Genet ; 27(4): 582-593, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30622326

ABSTRACT

The Integrator complex subunit 1 (INTS1) is a component of the integrator complex that comprises 14 subunits and associates with RPB1 to catalyze endonucleolytic cleavage of nascent snRNAs and assist RNA polymerase II in promoter-proximal pause-release on protein-coding genes. We present five patients, including two sib pairs, with biallelic sequence variants in INTS1. The patients manifested absent or severely limited speech, an abnormal gait, hypotonia and cataracts. Exome sequencing revealed biallelic variants in INTS1 in all patients. One sib pair demonstrated a missense variant, p.(Arg77Cys), and a frameshift variant, p.(Arg1800Profs*20), another sib pair had a homozygous missense variant, p.(Pro1874Leu), and the fifth patient had a frameshift variant, p.(Leu1764Cysfs*16) and a missense variant, p.(Leu2164Pro). We also report additional clinical data on three previously described individuals with a homozygous, loss of function variant, p.(Ser1784*) in INTS1 that shared cognitive delays, cataracts and dysmorphic features with these patients. Several of the variants affected the protein C-terminus and preliminary modeling showed that the p.(Pro1874Leu) and p.(Leu2164Pro) variants may interfere with INTS1 helix folding. In view of the cataracts observed, we performed in-situ hybridization and demonstrated expression of ints1 in the zebrafish eye. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make larvae with biallelic insertion/deletion (indel) variants in ints1. The mutant larvae developed typically through gastrulation, but sections of the eye showed abnormal lens development. The distinctive phenotype associated with biallelic variants in INTS1 points to dysfunction of the integrator complex as a mechanism for intellectual disability, eye defects and craniofacial anomalies.


Subject(s)
Cataract/genetics , Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Wnt1 Protein/genetics , Adolescent , Adult , Animals , Cataract/physiopathology , Child , Child, Preschool , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/physiopathology , Female , Frameshift Mutation/genetics , Gastrulation/genetics , Humans , Infant , Lens, Crystalline/growth & development , Lens, Crystalline/pathology , Male , Mutation, Missense/genetics , Pedigree , Protein Folding , Exome Sequencing , Wnt1 Protein/chemistry , Young Adult , Zebrafish/genetics
9.
J Obstet Gynaecol Can ; 40(11): 1417-1423, 2018 11.
Article in English | MEDLINE | ID: mdl-30473118

ABSTRACT

OBJECTIVE: Most prenatally identified congenital heart defects (CHDs) are the sole structural anomaly detected; however, there is a subgroup of cases where the specific genetic cause will impact prognosis, including chromosome abnormalities and single-gene causes. Next-generation sequencing of all the protein coding regions in the genome or targeted to genes involved in cardiac development is currently possible in the prenatal period, but there are minimal data on the clinical utility of such an approach. This study assessed the outcome of a CHD gene panel that included single-gene causes of syndromic and non-syndromic CHDs. METHOD: Sixteen cases with a fetal CHD identified on prenatal ultrasound were studied using a 108 CHD gene panel. DNA was extracted from cultured amniocytes. RESULTS: There was no diagnostic pathogenic variant identified in these cases. There was an average of 2.9 reportable variants identified per case and the majority of them were variants of uncertain significance. CONCLUSION: Next-generation sequencing has the potential for increased genetic diagnosis for fetal anomalies. However, the large number of variants and the absence of an examinable patient make the interpretation of these variants challenging.


Subject(s)
Heart Defects, Congenital , High-Throughput Nucleotide Sequencing/methods , Prenatal Diagnosis/methods , Female , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , Oligonucleotide Array Sequence Analysis , Pregnancy
10.
Am J Med Genet A ; 176(11): 2487-2493, 2018 11.
Article in English | MEDLINE | ID: mdl-30244537

ABSTRACT

PNPT1 is a mitochondrial RNA transport protein that has been linked to two discrete phenotypes, namely isolated sensorineural hearing loss (OMIM 614934) and combined oxidative phosphorylation deficiency (OMIM 614932). The latter has been described in multiple families presenting with complex neurologic manifestations in childhood. We describe adult siblings with biallelic PNPT1 variants identified through WES who presented with isolated severe congenital sensorineural hearing loss (SNHL). In their 40s, they each developed and then followed a nearly identical neurodegenerative course with ataxia, dystonia, and cognitive decline. Now in their 50s and 60s, all have developed the additional features of optic nerve atrophy, spasticity, and incontinence. The natural history of the condition in this family may suggest that the individuals previously reported as having isolated SNHL may be at risk of developing multisystem disease in late adulthood, and that PNPT1-related disorders may constitute a spectrum rather than distinct phenotypes.


Subject(s)
Exome Sequencing , Exoribonucleases/genetics , Hearing Loss, Sensorineural/genetics , Siblings , Adult , Exoribonucleases/metabolism , Female , Humans , Male , Middle Aged , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Eur J Hum Genet ; 26(12): 1752-1758, 2018 12.
Article in English | MEDLINE | ID: mdl-30089828

ABSTRACT

Pontocerebellar hypoplasia (PCH) is a heterogeneous neurodegenerative disorder with a prenatal onset. Using whole-exome sequencing, we identified variants in the gene Coenzyme A (CoA) synthase (COASY) gene, an enzyme essential in CoA synthesis, in four individuals from two families with PCH, prenatal onset microcephaly, and arthrogryposis. In family 1, compound heterozygous variants were identified in COASY: c.[1549_1550delAG]; [1486-3 C>G]. In family 2, all three affected siblings were homozygous for the c.1486-3 C>G variant. In both families, the variants segregated with the phenotype. RNA analysis showed that the c.1486-3 C>G variant leads to skipping of exon 7 with partial retention of intron 7, disturbing the reading frame and resulting in a premature stop codon (p.(Ala496Ilefs*20)). No CoA synthase protein was detected in patient cells by immunoblot analysis and CoA synthase activity was virtually absent. Partial CoA synthase defects were previously described as a cause of COASY Protein-Associated Neurodegeneration (CoPAN), a type of Neurodegeneration and Brain Iron Accumulation (NBIA). Here we demonstrate that near complete loss of function variants in COASY are associated with lethal PCH and arthrogryposis.


Subject(s)
Arthrogryposis/genetics , Cerebellar Diseases/genetics , Loss of Function Mutation , Microcephaly/genetics , Transferases/genetics , Aborted Fetus/abnormalities , Arthrogryposis/pathology , Cells, Cultured , Cerebellar Diseases/pathology , Humans , Infant, Newborn , Male , Microcephaly/pathology , Syndrome , Transferases/metabolism
12.
Genet Med ; 20(3): 294-302, 2018 03.
Article in English | MEDLINE | ID: mdl-28726806

ABSTRACT

PurposeThe purpose of this study was to develop a national program for Canadian diagnostic laboratories to compare DNA-variant interpretations and resolve discordant-variant classifications using the BRCA1 and BRCA2 genes as a case study.MethodsBRCA1 and BRCA2 variant data were uploaded and shared through the Canadian Open Genetics Repository (COGR; http://www.opengenetics.ca). A total of 5,554 variant observations were submitted; classification differences were identified and comparison reports were sent to participating laboratories. Each site had the opportunity to reclassify variants. The data were analyzed before and after the comparison report process to track concordant- or discordant-variant classifications by three different models.ResultsVariant-discordance rates varied by classification model: 38.9% of variants were discordant when using a five-tier model, 26.7% with a three-tier model, and 5.0% with a two-tier model. After the comparison report process, the proportion of discordant variants dropped to 30.7% with the five-tier model, to 14.2% with the three-tier model, and to 0.9% using the two-tier model.ConclusionWe present a Canadian interinstitutional quality improvement program for DNA-variant interpretations. Sharing of variant knowledge by clinical diagnostic laboratories will allow clinicians and patients to make more informed decisions and lead to better patient outcomes.


Subject(s)
Data Accuracy , Genetic Testing/standards , Information Dissemination , Quality Improvement , Canada , Clinical Decision-Making , Databases, Genetic , Genes, BRCA1 , Genes, BRCA2 , Genetic Counseling , Genetic Testing/methods , Genetic Variation , Government Programs , Humans , Reproducibility of Results , Workflow
14.
J Clin Invest ; 127(3): 912-928, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28165339

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.


Subject(s)
Aldehyde-Lyases , Cell Movement/genetics , Ichthyosis, Lamellar , Mesangial Cells/enzymology , Mutation , Nephrotic Syndrome , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Humans , Ichthyosis, Lamellar/enzymology , Ichthyosis, Lamellar/genetics , Ichthyosis, Lamellar/pathology , Male , Mesangial Cells/pathology , Mice , Mice, Knockout , Nephrotic Syndrome/enzymology , Nephrotic Syndrome/genetics , Nephrotic Syndrome/pathology , Protein Transport/genetics , Rats
15.
Can J Cardiol ; 33(2): 292.e5-292.e7, 2017 02.
Article in English | MEDLINE | ID: mdl-27965028

ABSTRACT

We report the finding of 2 de novo mutations in an 8-year-old boy with developmental delay and autism who underwent heart transplantation at 1 year of age for idiopathic dilated cardiomyopathy. We identified a de novo microdeletion at chromosome 2p16.3 involving the neurexin-1 (NRXN1) gene and a de novo pathologic variant (Pro838Leu) in the myosin heavy chain 7 (MYH7) gene. This case emphasizes the importance of comprehensive genetic evaluation in patients with cardiomyopathy, particularly if they have extracardiac abnormalities, and the necessity of interpreting variants with attention to the phenotype. A complete genetic diagnosis may require multiple testing modalities.


Subject(s)
Autistic Disorder/complications , Cardiac Myosins/genetics , Cardiomyopathy, Dilated/genetics , Cell Adhesion Molecules, Neuronal/genetics , DNA/genetics , Heart Transplantation , Mutation , Myosin Heavy Chains/genetics , Nerve Tissue Proteins/genetics , Autistic Disorder/genetics , Calcium-Binding Proteins , Cardiac Myosins/metabolism , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/surgery , Cell Adhesion Molecules, Neuronal/metabolism , Child , DNA Mutational Analysis , Humans , Male , Myosin Heavy Chains/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules , Pedigree , Phenotype
16.
Am J Med Genet A ; 173(3): 596-600, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27671926

ABSTRACT

Leigh disease is a progressive, infantile-onset, neurodegenerative disorder characterized by feeding difficulties, failure to thrive, hypotonia, seizures, and central respiratory compromise. Metabolic and neuroimaging investigations typically identify abnormalities consistent with a disorder of mitochondrial energy metabolism. Mutations in more than 35 genes affecting the mitochondrial respiratory chain encoded from both the nuclear and mitochondrial genomes have been associated with Leigh disease. The clinical presentations of five individuals of Hutterite descent with Leigh disease are described herein. An identity-by-descent mapping and candidate gene approach was used to identify a novel homozygous c.393dupA frameshift mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4) gene. The carrier frequency of this mutation was estimated in >1,300 Hutterite individuals to be 1 in 27. © 2017 Wiley Periodicals, Inc.


Subject(s)
Ethnicity/genetics , Frameshift Mutation , Genetic Association Studies , Leigh Disease/diagnosis , Leigh Disease/genetics , NADH Dehydrogenase/genetics , Phenotype , Canada , Consanguinity , DNA Mutational Analysis , Electron Transport Complex I , Female , Genotype , Humans , Infant , Magnetic Resonance Imaging , Male , Oligonucleotide Array Sequence Analysis , Pedigree , Polymorphism, Single Nucleotide , Siblings , United States
17.
Front Cardiovasc Med ; 3: 33, 2016.
Article in English | MEDLINE | ID: mdl-27713880

ABSTRACT

Cell-free DNA (cfDNA) has significant potential in the diagnosis and monitoring of clinical conditions. However, accurately and easily distinguishing the relative proportion of DNA molecules in a mixture derived from two different sources (i.e., donor and recipient tissues after transplantation) is challenging. In human cellular transplantation, there is currently no useable method to detect in vivo engraftment, and blood-based non-invasive tests for allograft rejection in solid organ transplantation are either non-specific or absent. Elevated levels of donor cfDNA have been shown to correlate with solid organ rejection, but complex methodology limits implementation of this promising biomarker. We describe a cost-effective method to quantify donor cfDNA in recipient plasma using a panel of high-frequency single nucleotide polymorphisms, next-generation (semiconductor) sequencing, and a novel mixture model algorithm. In vitro, our method accurately and rapidly determined donor:recipient DNA admixture. For in vivo testing, donor cfDNA was serially quantified in an infant with a urea cycle disorder after receiving six daily infusions of donor liver cells. Donor cfDNA isolated from 1 to 2 ml of recipient plasma was detected as late as 24 weeks after infusion suggesting engraftment. The percentage of circulating donor cfDNA was also assessed in pediatric and adult heart transplant recipients undergoing routine endomyocardial biopsy with levels observed to be stable over time and generally measuring <1% in cases without moderate or severe cellular rejection. Unlike existing non-invasive methods used to define the proportion of donor cfDNA in solid organ transplant patients, our assay does not require sex mismatch, donor genotyping, or whole-genome sequencing and potentially has broad application to detect cellular engraftment or allograft injury after transplantation.

18.
Dev Biol ; 414(2): 181-92, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27126199

ABSTRACT

Angioblasts of the developing vascular system require many signaling inputs to initiate their migration, proliferation and differentiation into endothelial cells. What is less studied is which intrinsic cell factors interpret these extrinsic signals. Here, we show the Lim homeodomain transcription factor islet2a (isl2a) is expressed in the lateral posterior mesoderm prior to angioblast migration. isl2a deficient angioblasts show disorganized migration to the midline to form axial vessels and fail to spread around the tailbud of the embryo. Isl2a morphants have fewer vein cells and decreased vein marker expression. We demonstrate that isl2a is required cell autonomously in angioblasts to promote their incorporation into the vein, and is permissive for vein identity. Knockout of isl2a results in decreased migration and proliferation of angioblasts during intersegmental artery growth. Since Notch signaling controls both artery-vein identity and tip-stalk cell formation, we explored the interaction of isl2a and Notch. We find that isl2a expression is negatively regulated by Notch activity, and that isl2a positively regulates flt4, a VEGF-C receptor repressed by Notch during angiogenesis. Thus Isl2a may act as an intermediate between Notch signaling and genetic programs controlling angioblast number and migration, placing it as a novel transcriptional regulator of early angiogenesis.


Subject(s)
Gene Expression Regulation, Developmental , LIM-Homeodomain Proteins/physiology , Neovascularization, Physiologic/physiology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Arteries/embryology , Cell Movement , Gene Knockout Techniques , LIM-Homeodomain Proteins/deficiency , LIM-Homeodomain Proteins/genetics , Mesoderm , Morpholinos/genetics , Morpholinos/toxicity , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , RNA, Messenger/genetics , Receptors, Notch/physiology , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription, Genetic , Vascular Endothelial Growth Factor Receptor-3/physiology , Veins/embryology , Zebrafish/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
19.
Eur J Hum Genet ; 24(10): 1436-44, 2016 10.
Article in English | MEDLINE | ID: mdl-27004616

ABSTRACT

Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings. We ascertained five, previously unreported individuals with biallelic variants in CRB2 that were predicted to affect function. We compiled the clinical features of reported cases and reviewed available literature for cases with features suggestive of CRB2-related syndrome in order to better understand the phenotypic and genotypic manifestations. Phenotypic analyses showed that ventriculomegaly was a common clinical manifestation (9/11 confirmed cases), in contrast to the original reports, in which patients were ascertained due to renal disease. Two children had minor eye findings and one was diagnosed with a B-cell lymphoma. Further genetic analysis identified one family with two affected siblings who were both heterozygous for a variant in NPHS2 predicted to affect function and separate families with sequence variants in NPHS4 and BBS7 in addition to the CRB2 variants. Our report expands the clinical phenotype of CRB2-related syndrome and establishes ventriculomegaly and hydrocephalus as frequent manifestations. We found additional sequence variants in genes involved in kidney development and ciliopathies in patients with CRB2-related syndrome, suggesting that these variants may modify the phenotype.


Subject(s)
Carrier Proteins/genetics , Genotype , Hydrocephalus/genetics , Membrane Proteins/genetics , Nephrosis/genetics , Phenotype , Adaptor Proteins, Signal Transducing , Cytoskeletal Proteins , Female , Humans , Hydrocephalus/diagnosis , Infant , Intracellular Signaling Peptides and Proteins/genetics , Male , Mutation , Nephrosis/diagnosis , Pedigree , Proteins/genetics , Syndrome
20.
Am J Med Genet A ; 170(3): 760-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26691894

ABSTRACT

Ciliopathies are a class of clinically and genetically heterogeneous disorders characterized by deficits of the primary cilium, an important organelle for cellular signaling and development. Here we report on a patient from a consanguineous family presenting with renal cysts, short stature, distinctive facial features, missing teeth, brachydactyly, narrow chest, and abnormal ribs. His phenotype resembled a skeletal ciliopathy and the initial clinical differential diagnosis included Jeune thoracic dystrophy and cranioectodermal dysplasia. Due to the presence of parental consanguinity, a homozygous recessive mutation was the suspected cause and homozygosity mapping was used to direct candidate gene sequencing. WDR35, an intraflagellar transport protein previously associated with cranioectodermal dysplasia, the more severe short rib polydactyly syndrome type V and recently Ellis van Creveld syndrome, is present within a region of homozygosity and sequencing of all coding exons identified a novel homozygous nonsynonymous variant, p.Trp1153Cys. This variant affects a highly conserved tryptophan residue, is predicted to be deleterious, and is the most distal mutation yet reported in WDR35. This case expands the spectrum of phenotypes caused by WDR35 mutations, which we review herein.


Subject(s)
Bone and Bones/abnormalities , Craniosynostoses/diagnosis , Craniosynostoses/genetics , Ectodermal Dysplasia/diagnosis , Ectodermal Dysplasia/genetics , Homozygote , Mutation , Phenotype , Proteins/genetics , Adolescent , Cytoskeletal Proteins , Ellis-Van Creveld Syndrome/diagnosis , Ellis-Van Creveld Syndrome/genetics , Hedgehog Proteins , Humans , Intracellular Signaling Peptides and Proteins , Male , Skeleton/diagnostic imaging , Skeleton/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...