Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Am J Respir Cell Mol Biol ; 45(1): 81-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20855652

ABSTRACT

Cathepsin S (Cat S) is predominantly expressed in antigen-presenting cells and is up-regulated in several preclinical models of antigen-induced inflammation, suggesting a role in the allergic response. Prophylactic dosing of an irreversible Cat S inhibitor has been shown to attenuate pulmonary eosinophilia in mice, supporting the hypothesis that Cat S inhibition before the initiation of airway inflammation is beneficial in airway disease. In addition, Cat S has been shown to play a role in more distal events in the allergic response. To determine where Cat S inhibition may affect the allergic response, we used complementary genetic and pharmacological approaches to investigate the role of Cat S in the early and downstream allergic events in a murine model of antigen-induced lung inflammation. Cat S knockout mice did not develop ovalbumin-induced pulmonary inflammation, consistent with a role for Cat S in the development of the allergic response. Alternatively, wild-type mice were treated with a reversible, highly selective Cat S inhibitor in prophylactic and therapeutic dosing paradigms and assessed for changes in airway inflammation. Although both treatment paradigms resulted in potent Cat S inhibition, only prophylactic Cat S inhibitor dosing blocked lung inflammation, consistent with our findings in Cat S knockout mice. The findings indicate that although Cat S is up-regulated in allergic models, it does not appear to play a significant role in the downstream effector inflammatory phase in this model; however, our results demonstrate that Cat S inhibition in a prophylactic paradigm would ameliorate airway inflammation.


Subject(s)
Asthma/prevention & control , Cathepsins/genetics , Cathepsins/pharmacology , Animals , Asthma/genetics , Asthma/metabolism , Cathepsins/biosynthesis , Disease Models, Animal , Drug Evaluation , Humans , Mice , Mice, Knockout , Ovalbumin/adverse effects , Ovalbumin/pharmacology , Pulmonary Eosinophilia/genetics , Pulmonary Eosinophilia/metabolism , Pulmonary Eosinophilia/prevention & control , Up-Regulation/drug effects , Up-Regulation/genetics
2.
Bioorg Med Chem Lett ; 20(3): 887-92, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20061146

ABSTRACT

MK-0674 is a potent and selective cathepsin K inhibitor from the same structural class as odanacatib with a comparable inhibitory potency profile against Cat K. It is orally bioavailable and exhibits long half-life in pre-clinical species. In vivo studies using deuterated MK-0674 show stereoselective epimerization of the alcohol stereocenter via an oxidation/reduction cycle. From in vitro incubations, two metabolites could be identified: the hydroxyleucine and the glucuronide conjugate which were confirmed using authentic synthetic standards.


Subject(s)
Biphenyl Compounds/administration & dosage , Biphenyl Compounds/pharmacokinetics , Cathepsin K/antagonists & inhibitors , Cysteine Proteinase Inhibitors/administration & dosage , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Discovery/methods , Administration, Oral , Animals , Biological Availability , Biphenyl Compounds/chemistry , Cathepsin K/metabolism , Cysteine Proteinase Inhibitors/chemistry , Dogs , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Macaca mulatta , Rabbits , Rats
3.
Bioorg Med Chem Lett ; 18(3): 923-8, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18226527

ABSTRACT

Odanacatib is a potent, selective, and neutral cathepsin K inhibitor which was developed to address the metabolic liabilities of the Cat K inhibitor L-873724. Substituting P1 and modifying the P2 side chain led to a metabolically robust inhibitor with a long half-life in preclinical species. Odanacatib was more selective in whole cell assays than the published Cat K inhibitors balicatib and relacatib. Evaluation in dermal fibroblast culture showed minimal intracellular collagen accumulation relative to less selective Cat K inhibitors.


Subject(s)
Biphenyl Compounds/pharmacology , Cathepsins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Animals , Azepines/chemistry , Azepines/pharmacology , Cathepsin K , Collagen/drug effects , Collagen/immunology , Dogs , Fibroblasts/drug effects , Humans , Models, Biological , Molecular Structure , Osteoporosis, Postmenopausal/drug therapy , Skin/cytology , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
4.
Mol Pharmacol ; 73(1): 147-56, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17940194

ABSTRACT

Cathepsin K is a lysosomal cysteine protease that is a pharmacological target for the treatment of osteoporosis. Previous studies showed that basic, lipophilic cathepsin K inhibitors are lysosomotropic and have greater activities in cell-based assays against cathepsin K, as well as the physiologically important lysosomal cysteine cathepsins B, L, and S, than expected based on their potencies against these isolated enzymes. Long-term administration of the basic cathepsin K inhibitors N-(1-(((cyanomethyl)amino)carbonyl)cyclohexyl)-4-(2-(4-methyl-piperazin-1-yl)-1,3-thiazol-4-yl)benzamide (L-006235) and balicatib to rats at a supratherapeutic dose of 500 mg/kg/day for 4 weeks resulted in increased tissue protein levels of cathepsin B and L but had no effect on cathepsin B and L message. This is attributed to the inhibitor engagement of these off-target enzymes and their stabilization to proteolytic degradation. No such increase in these tissue cathepsins was detected at the same dose of N-(cyanomethyl)-N(2)-{(1S)-2,2,2-trifluoro-1-[4'-methylsulfonyl)biphenyl-4-yl]ethyl}-l-leucinamide (L-873724), a potent nonbasic cathepsin K inhibitor with a similar off-target profile, although all three inhibitors provided similar plasma exposures. Using an activity-based probe, (125)I-BIL-DMK, in vivo inhibition of cathepsins B, L, and S was detected in tissues of mice given a single oral dose of L-006235 and balicatib, but not in mice given L-873724. In each case, similar tissue levels were achieved by all three compounds, thereby demonstrating the in vivo cathepsin selectivity of L-873724. In conclusion, basic cathepsin K inhibitors demonstrate increased off-target cysteine cathepsin activities than their nonbasic analogs and potentially have a greater risk of adverse effects associated with inhibition of these cathepsins.


Subject(s)
Cathepsins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Animals , Cathepsin K , Mice
6.
J Med Chem ; 50(4): 794-806, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17300164

ABSTRACT

The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats. Rat bile duct cannulation studies revealed that high concentrations of parent drug were present in the biliary fluid (Cmax = 1100 microM for 6 and 3900 microM for 7). This pharmacokinetic liability was circumvented by replacing the 7-methylsulfone substituent present in 6 and 7 with a fluorine atom resulting in antagonists with diminished propensity for biliary excretion and with superior pharmacokinetic profiles. Further optimization led to the discovery of the potent and selective DP antagonist 13.


Subject(s)
Indoles/chemical synthesis , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Airway Obstruction/drug therapy , Animals , Bile/metabolism , Binding, Competitive , Dogs , Hepatocytes/metabolism , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Macaca fascicularis , Male , Mice , Microsomes/metabolism , Nasal Decongestants/chemical synthesis , Nasal Decongestants/pharmacokinetics , Nasal Decongestants/pharmacology , Protein Binding , Rats , Rats, Sprague-Dawley , Sheep , Stereoisomerism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 16(21): 5639-42, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16931013

ABSTRACT

Two different series of very potent and selective EP(3) antagonists have been reported: a novel series of ortho-substituted cinnamic acids [Belley, M., Gallant, M., Roy, B., Houde, K., Lachance, N., Labelle, M., Trimble, L., Chauret, N., Li, C., Sawyer, N., Tremblay, N., Lamontagne, S., Carrière, M.-C., Denis, D., Greig, G. M., Slipetz, D., Metters, K. M., Gordon, R., Chan, C. C., Zamboni, R. J. Bioorg. Med. Chem. Lett.2005, 15, 527] and the acylsulfonamides of ortho-(arylmethyl)cinnamates. [(a) Juteau, H., Gareau, Y., Labelle, M., Sturino, C. F., Sawyer, N., Tremblay, N., Lamontagne, S., Carrière, M.-C., Denis, D., Metters, K. M. Bioorg. Med. Chem. 2001, 9, 1977; (b) Juteau, H., Gareau, Y., Labelle, M., Lamontagne, S., Tremblay, N., Carrière, M.-C., Denis, D., Sawyer, N., Metters, K. M. Bioorg. Med. Chem. Lett.2001, 11, 747] The structural differences between the two series, along with their biological activity in vivo, in vitro, and metabolism, are analyzed. Some of those compounds, including hybrids containing the best structural features of both series, possess K(i) as low as 0.6 nM on the EP(3) receptor.


Subject(s)
Cinnamates/pharmacology , Receptors, Prostaglandin E/antagonists & inhibitors , Sulfonamides/pharmacology , Cinnamates/chemistry , Humans , Sulfonamides/chemistry
8.
Bioorg Med Chem Lett ; 16(11): 3043-8, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16529930

ABSTRACT

A novel indole series of PGD2 receptor (DP receptor) antagonists is presented. Optimization of this series led to the identification of potent and selective DP receptor antagonists. In particular, antagonists 35 and 36 were identified with Ki values of 2.6 and 1.8 nM, respectively. These two antagonists are also potent in a DP functional assay where they inhibit the PGD2 induced cAMP production in platelet rich plasma with IC50 values of 7.9 and 8.6 nM, respectively. The structure-activity relationships of this indole series of DP receptor antagonists will also be discussed.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Indoles/chemical synthesis , Molecular Structure , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Safrole/analogs & derivatives , Safrole/chemistry , Structure-Activity Relationship
9.
J Med Chem ; 48(24): 7535-43, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16302795

ABSTRACT

The lysosomal cysteine protease cathepsin K is a target for osteoporosis therapy. The aryl-piperazine-containing cathepsin K inhibitor CRA-013783/L-006235 (1) displays greater than 4000-fold selectivity against the lysosomal/endosomal antitargets cathepsin B, L, and S. However, 1 and other aryl-piperazine-containing analogues, including balicatib (10), are approximately 10-100-fold more potent in cell-based enzyme occupancy assays than against each purified enzyme. This phenomenon arises from their basic, lipophilic nature, which results in lysosomal trapping. Consistent with its lysosomotropic nature, 1 accumulates in cells and in rat tissues of high lysosome content. In contrast, nonbasic aryl-morpholino-containing analogues do not exhibit lysosomotropic properties. Increased off-target activities of basic cathepsin K inhibitors were observed in a cell-based cathepsin S antigen presentation assay. No potency increases of basic inhibitors in a functional cathepsin K bone resorption whole cell assay were detected. Therefore, basic cathepsin K inhibitors, such as 1, suffer from reduced functional selectivities compared to those predicted using purified enzyme assays.


Subject(s)
Benzamides/pharmacology , Cathepsins/antagonists & inhibitors , Lysosomes/drug effects , Morpholines/pharmacology , Piperazines/pharmacology , Thiazoles/pharmacology , Animals , Antigen Presentation/drug effects , Autoradiography , Benzamides/chemistry , Benzamides/pharmacokinetics , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/pharmacokinetics , Bone Density Conservation Agents/pharmacology , Cathepsin B/antagonists & inhibitors , Cathepsin K , Cathepsin L , Cell Line , Cysteine Endopeptidases , Female , Humans , Lysosomes/enzymology , Mice , Mice, Inbred C57BL , Morpholines/chemistry , Piperazines/chemistry , Piperazines/pharmacokinetics , Rabbits , Rats , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacokinetics , Tissue Distribution
10.
Bioorg Med Chem Lett ; 15(4): 1155-60, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15686932

ABSTRACT

The synthesis and the EP(1) receptor binding affinity of 2,3-diarylthiophene derivatives are described. The evaluation of the structure-activity relationship (SAR) in this series led to the identification of compounds 4, 7, and 12a, which exhibit high affinity for the human EP(1) receptor and a selectivity greater than 100-fold against the EP(2), EP(3), EP(4), DP, FP, and IP receptors and greater than 25-fold versus the TP receptor. These three antagonists present good pharmacokinetics in rats and significant differences in the way they are distributed in the brain.


Subject(s)
Receptors, Prostaglandin E/antagonists & inhibitors , Thiophenes/chemical synthesis , Thiophenes/pharmacokinetics , Animals , Brain/metabolism , Cell Line , Half-Life , Humans , Pharmacokinetics , Rats , Receptors, Prostaglandin E, EP1 Subtype , Structure-Activity Relationship , Thiophenes/pharmacology , Tissue Distribution
11.
Bioorg Med Chem Lett ; 15(3): 527-30, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15664806

ABSTRACT

A series of novel ortho-substituted cinnamic acids have been synthesized, and their binding activity and selectivity on the four prostaglandin E(2) receptors evaluated. Many of them are very potent and selective EP(3) antagonists (K(i) 3-10 nM), while compound 9 is a very good and selective EP(2) agonist (K(i) 8 nM). The biological profile of the EP(2) agonist 9 in vivo and the metabolic profile of selected EP(3) antagonists are also reported.


Subject(s)
Cinnamates/chemical synthesis , Cinnamates/pharmacology , Receptors, Prostaglandin E/antagonists & inhibitors , Cell Line , Cinnamates/metabolism , Cyclic AMP/biosynthesis , Humans , Pharmacokinetics , Protein Binding , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP3 Subtype , Structure-Activity Relationship
12.
Anal Biochem ; 335(2): 218-27, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15556560

ABSTRACT

We describe a novel diazomethylketone-containing irreversible inhibitor (BIL-DMK) which is specific for a subset of pharmaceutically important cysteine cathepsin proteases. BIL-DMK rapidly inactivates cathepsins B, F, K, L, S, and V in isolated enzyme assays and labels cathepsins in whole cells. The presence of catalytically active cathepsins B, L, and K or S was demonstrated using radioiodinated BIL-DMK in HepG2 (hepatoma), HIG82 (rabbit synoviocyte), and Ramos (B lymphoma) cell lines, respectively. The identity of each protein labeled was confirmed from the isoelectric point and molecular mass of the radioactive spots on two-dimensional gel and by comigration with each cathepsin as identified by immunoblotting. These cell lines were used to establish whole-cell enzyme occupancy assays to determine the potency of both irreversible and reversible inhibitors against each cathepsin in their native cellular lysosomal or endosomal environment. These whole-cell enzyme occupancy assays are useful to determine the cellular permeability of competing inhibitors and have the advantage of not requiring specific substrates for each cathepsin of interest.


Subject(s)
Biphenyl Compounds/pharmacology , Cathepsins/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Diazomethane/analogs & derivatives , Leucine/analogs & derivatives , Animals , Autoradiography , Blotting, Western , Cathepsin B/analysis , Cathepsin B/antagonists & inhibitors , Cathepsin K , Cathepsin L , Cathepsins/analysis , Cathepsins/antagonists & inhibitors , Cell Line, Tumor , Cysteine Endopeptidases/analysis , Diazomethane/chemical synthesis , Diazomethane/pharmacology , Humans , Iodine Radioisotopes , Leucine/pharmacology , Rabbits
13.
14.
Prostaglandins Other Lipid Mediat ; 73(1-2): 87-101, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15165034

ABSTRACT

BACKGROUND: Prostaglandin D2 (PGD2) is released from mast cells during the allergic response. OBJECTIVE: Since PGD2 has been shown to induce nasal congestion in humans, we investigated the distribution of hematopoietic prostaglandin D synthase (PGDS) and the two PGD2 receptors, DP and CRTH2 in human nasal mucosa from healthy subjects and subjects suffering from polyposis, a severe form of chronic rhinosinusitis. METHODS: DP mRNA expression was detected by in situ hybridization while PGDS, CRTH2 and various leukocyte markers expression were revealed by immunohistochemistry. RESULTS: In the normal mucosa, PGDS was only detected in few resident mast cells while CRTH2 was undetectable. In contrast, DP receptor mRNA was detected in epithelial goblet cells, serous glands and in the vasculature. In the nasal mucosa of subjects suffering from polyposis: (1) PGDS was detected in mast cells and other large infiltrating inflammatory cells, (2) both DP mRNA and CRTH2 were detected in eosinophils and (3) CRTH2 was detected on a subset of infiltrating T cells. Although DP mRNA could not be detected in the T cells invading the nasal mucosa, it was found to be expressed in the T cells present in the lymph node and the thymus from normal individuals. CONCLUSION: This study indicates that cells capable of producing PGD2 are present in the nasal mucosa and that both PGD2 receptors, DP and CRTH2, might play a role in inflammatory disease of the upper airways.


Subject(s)
Intramolecular Oxidoreductases/biosynthesis , Mast Cells/metabolism , Nasal Mucosa/metabolism , Nasal Polyps/metabolism , Receptors, Immunologic/biosynthesis , Receptors, Prostaglandin/biosynthesis , Adult , Aged , Eosinophils/metabolism , Female , Gene Expression Regulation , Humans , Hypersensitivity/metabolism , Hypersensitivity/pathology , In Situ Hybridization , Inflammation/metabolism , Inflammation/pathology , Lipocalins , Lymph Nodes/cytology , Lymph Nodes/metabolism , Male , Middle Aged , Nasal Mucosa/cytology , Nasal Mucosa/pathology , Nasal Polyps/pathology , RNA, Messenger/biosynthesis , T-Lymphocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism
15.
Bioorg Med Chem Lett ; 13(21): 3813-6, 2003 Nov 03.
Article in English | MEDLINE | ID: mdl-14552786

ABSTRACT

Potent and selective ligands for the human EP3 prostanoid receptor are described. Triaryl compounds bearing an ortho-substituted propionic acid moiety were identified as potent EP3 antagonists based on the SAR described herein. The binding affinities of key compound on all eight human prostanoid receptors is reported.


Subject(s)
Receptors, Prostaglandin E/drug effects , Animals , Cell Line, Tumor , Cyclic AMP/metabolism , Humans , Indicators and Reagents , Kinetics , Protein Conformation , Rats , Receptors, Prostaglandin E, EP3 Subtype , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...