Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 122(2): 233-243, 2019 02.
Article in English | MEDLINE | ID: mdl-29955171

ABSTRACT

Seagrass meadows provide important ecosystem services and are critical for the survival of the associated invertebrate community. However, they are threatened worldwide by human-driven environmental change. Understanding the seagrasses' potential for adaptation is critical to assess not only their ability to persist under future global change scenarios, but also to assess the persistence of the associated communities. Here we screened a wild population of Posidonia oceanica, an endemic long-lived seagrass in the Mediterranean Sea, for genes that may be target of environmental selection, using an outlier and a genome-wide transcriptome analysis. We identified loci where polymorphism or differential expression was associated with either a latitudinal or a bathymetric gradient, as well as with both gradients in an effort to identify loci associated with temperature and light. We found the candidate genes underlying growth and immunity to be divergent between populations adapted to different latitudes and/or depths, providing evidence for local adaptation. Furthermore, we found evidence of reduced gene flow among populations including adjacent populations. Reduced gene flow, combined with low sexual recombination, small effective population size, and long generation time of P. oceanica raises concerns for the long-term persistence of this species, especially in the face of rapid environmental change driven by human activities.


Subject(s)
Alismatales/physiology , Adaptation, Biological , Alismatales/genetics , Altitude , Ecosystem , Gene Flow , Genome, Plant , Mediterranean Sea , Plant Proteins/genetics , Polymorphism, Genetic
2.
Front Plant Sci ; 9: 1563, 2018.
Article in English | MEDLINE | ID: mdl-30464766

ABSTRACT

Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of the bacterial canker, the most devastating disease of kiwifruit vines. Before entering the host tissues, this pathogen has an epiphytic growth phase on kiwifruit flowers and leaves, thus the ecological interactions within epiphytic bacterial community may greatly influence the onset of the infection process. The bacterial community associated to the two most important cultivated kiwifruit species, Actinidia chinensis and Actinidia deliciosa, was described both on flowers and leaves using Illumina massive parallel sequencing of the V3 and V4 variable regions of the 16S rRNA gene. In addition, the effect of plant infection by Psa on the epiphytic bacterial community structure and biodiversity was investigated. Psa infection affected the phyllosphere microbiome structures in both species, however, its impact was more pronounced on A. deliciosa leaves, where a drastic drop in microbial biodiversity was observed. Furthermore, we also showed that Psa was always present in syndemic association with Pseudomonas syringae pv. syringae and Pseudomonas viridiflava, two other kiwifruit pathogens, suggesting the establishment of a pathogenic consortium leading to a higher pathogenesis capacity. Finally, the analyses of the dynamics of bacterial populations provided useful information for the screening and selection of potential biocontrol agents against Psa.

3.
BMC Genomics ; 19(1): 585, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30081820

ABSTRACT

BACKGROUND: Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy. RESULTS: De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results. CONCLUSIONS: Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field.


Subject(s)
Actinidia/genetics , Gene Expression Profiling/methods , Plant Diseases/genetics , Plant Proteins/genetics , Thiadiazoles/pharmacology , Actinidia/drug effects , Actinidia/microbiology , Disease Resistance , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/microbiology , Pseudomonas syringae/physiology , Sequence Analysis, RNA
4.
Food Microbiol ; 66: 110-116, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28576359

ABSTRACT

In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems.


Subject(s)
Bacterial Proteins/immunology , Bacteriophages/physiology , Lactobacillus helveticus/immunology , Lactobacillus helveticus/virology , Bacterial Proteins/genetics , Bacteriophages/genetics , Lactobacillus helveticus/genetics , Virus Replication
5.
Genome Announc ; 4(6)2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27979937

ABSTRACT

We report here the draft genome sequence of the probiotic Pediococcus parvulus 2.6, a lactic acid bacterial strain isolated from ropy cider. The bacterium produces a prebiotic and immunomodulatory exopolysaccharide, and this is the first strain of the P. parvulus species whose genome has been characterized.

6.
Food Microbiol ; 59: 196-204, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27375260

ABSTRACT

The spoilage potential of Brettanomyces bruxellensis in wine is strongly connected with the aptitude of this yeast to enter in a Viable But Non Culturable (VBNC) state when exposed to the harsh wine conditions. In this work, we characterized the VBNC behaviour of seven strains of B. bruxellensis representing a regional intraspecific biodiversity, reporting conclusive evidence for the assessment of VBNC as a strain-dependent character. The VBNC behaviour was monitored by fluorescein diacetate staining/flow cytometry for eleven days after addition of 0.4, 0.6, 0.8, 1 and 1.2 mg/L of molecular SO2 (entrance in the VBNC state) and after SO2 removal (exit from the VBNC state). Furthermore, one representative strain was selected and RNA-seq analysis performed after exposure to 1.2 mg/L SO2 and during the recovery phase. 30 and 1634 genes were identified as differentially expressed following VBNC entrance and 'resuscitation', respectively. The results reported strongly suggested that the entrance in the SO2-induced VBNC state in B. bruxellensis is associated with both, sulfite toxicity and oxidative stress response, confirming the crucial role of genes/proteins involved in redox cell homeostasis. Among the genes induced during recovery, the expression of genes involved in carbohydrate metabolism and encoding heat shock proteins, as well as enriched categories including amino acid transport and transporter activity was observed. The evidences of a general repression of genes involved in DNA replication suggest the occurrence of a true resuscitation of cell rather than a simple regrowth.


Subject(s)
Brettanomyces/genetics , Brettanomyces/physiology , Food Microbiology , Microbial Viability , Wine/microbiology , Brettanomyces/drug effects , Brettanomyces/growth & development , Carbohydrate Metabolism/genetics , Colony Count, Microbial/methods , Culture Media , Gene Expression Profiling , Heat-Shock Proteins/genetics , Homeostasis , Oxidation-Reduction , Oxidative Stress/genetics , Phenols/metabolism , Sulfites , Sulfur Dioxide/pharmacology , Wine/analysis
7.
Genome Announc ; 4(3)2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27284133

ABSTRACT

Lactobacillus collinoides CUPV237 is a strain isolated from a Basque cider. Lactobacillus collinoides is one of the most frequent species found in cider from Spain, France, or England. A notable feature of the L. collinoides CUPV237 strain is its ability to produce exopolysaccharides.

8.
Genome Announc ; 4(2)2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27081128

ABSTRACT

Clostridium sporogenesis a causative agent of food spoilage and is often used as the nontoxigenic surrogate forClostridium botulinum Here, we described the draft genome sequence and annotation ofC. sporogenesstrain UC9000 isolated from raw milk.

9.
Appl Microbiol Biotechnol ; 100(10): 4595-605, 2016 May.
Article in English | MEDLINE | ID: mdl-26952108

ABSTRACT

Probiotics are microorganisms that confer beneficial effects on the host; nevertheless, before being allowed for human consumption, their safety must be verified with accurate protocols. In the genomic era, such procedures should take into account the genomic-based approaches. This study aims at assessing the safety traits of Bacillus coagulans GBI-30, 6086 integrating the most updated genomics-based procedures and conventional phenotypic assays. Special attention was paid to putative virulence factors (VF), antibiotic resistance (AR) genes and genes encoding enzymes responsible for harmful metabolites (i.e. biogenic amines, BAs). This probiotic strain was phenotypically resistant to streptomycin and kanamycin, although the genome analysis suggested that the AR-related genes were not easily transferrable to other bacteria, and no other genes with potential safety risks, such as those related to VF or BA production, were retrieved. Furthermore, no unstable elements that could potentially lead to genomic rearrangements were detected. Moreover, a workflow is proposed to allow the proper taxonomic identification of a microbial strain and the accurate evaluation of risk-related gene traits, combining whole genome sequencing analysis with updated bioinformatics tools and standard phenotypic assays. The workflow presented can be generalized as a guideline for the safety investigation of novel probiotic strains to help stakeholders (from scientists to manufacturers and consumers) to meet regulatory requirements and avoid misleading information.


Subject(s)
Bacillus coagulans/genetics , Genome, Bacterial , Probiotics , Bacillus coagulans/drug effects , Bacillus coagulans/metabolism , Biogenic Amines/metabolism , Consumer Product Safety , Drug Resistance, Multiple, Bacterial/genetics , Kanamycin/pharmacology , Phenotype , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptomycin/pharmacology
10.
Int J Food Microbiol ; 221: 29-36, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26803271

ABSTRACT

Fusarium langsethiae is a widespread pathogen of small grain cereals, causing problems with T-2 and HT-2 toxin contamination in grains every year. In an effort to better understand the biology of this fungus, we present a draft genome sequence of F. langsethiae Fl201059 isolated from oats in Norway. The assembly was fragmented, but reveals a genome of approximately 37.5 Mb, with a GC content around 48%, and 12,232 predicted protein-coding genes. Focusing on secondary metabolism we identified candidate genes for 12 polyketide synthases, 13 non-ribosomal peptide synthetases, and 22 genes for terpene/isoprenoid biosynthesis. Some of these were found to be unique compared to sequence databases. The identified putative Tri5 cluster was highly syntenic to the cluster reported in F. sporotrichioides. Fusarium langsethiae Fl201059 produces a high number of secondary metabolites on Yeast Extract Sucrose (YES) agar medium, dominated by type A trichothecenes. Interestingly we found production of glucosylated HT-2 toxin (Glu-HT-2), previously suggested to be formed by the host plant and not by the fungus itself. In greenhouse inoculations of F. langsethiae Fl201059 on barley and oats, we detected the type A trichothecenes: neosolaniol, HT-2 toxin, T-2 toxin, Glu-HT-2 and numerous derivatives of these.


Subject(s)
Food Microbiology , Fusarium/chemistry , Fusarium/genetics , Genome, Fungal , Trichothecenes/analysis , Base Sequence , Edible Grain/microbiology , Fusarium/isolation & purification , Fusarium/metabolism , Norway , Trichothecenes/metabolism
11.
Genome Announc ; 3(2)2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25767234

ABSTRACT

Here, we describe the draft genome sequence and annotation of Lactobacillus plantarum strain Lp90, the first sequenced genome of a L. plantarum strain isolated from wine. This strain has a noticeable ropy phenotype and showed potential probiotic properties. The genome consists of 3,324,076 bp (33 contigs) and contains 3,155 protein coding genes, 34 pseudogenes, and 84 RNA genes.

12.
Genome Announc ; 2(6)2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25377698

ABSTRACT

Bacillus coagulans GBI-30, 6086 is a safe strain, already available on the market, and characterized by certified beneficial effects. The draft genome sequence presented here constitutes the first pillar toward the identification of the molecular mechanisms responsible for its positive features and safety.

13.
Genome Announc ; 2(5)2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25342687

ABSTRACT

Oenococcus oeni is the principal lactic acid bacterium responsible for malolactic fermentation in wine. Here, we announce the genome sequences of five O. oeni strains isolated from Nero di Troia wine undergoing spontaneous malolactic fermentation, and we report, for the first time, several genome sequences of strains isolated from the same terroir.

14.
Genome Announc ; 2(4)2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24994801

ABSTRACT

Oenococcus oeni OM27 is a strain selected from "Nero di Troia" wine undergoing spontaneous malolactic fermentation. "Nero di Troia" is a wine made from "Uva di Troia" grapes, an autochthonous black grape variety from the Apulian region (south of Italy). In this paper we present a 1.78-Mb assembly of the O. oeni OM27 genome, the first fully assembled genome of an O. oeni strain from an Italian wine.

15.
BMC Genomics ; 14: 540, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23937585

ABSTRACT

BACKGROUND: Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseases as bacterial, fungal wilts and root-knot nematodes. The little information on Solanum torvum (hereafter Torvum) resistance mechanisms, is mostly attributable to the lack of genomic tools (e.g. dedicated microarray) as well as to the paucity of database information limiting high-throughput expression studies in Torvum. RESULTS: As a first step towards transcriptome profiling of Torvum inoculated with the nematode M. incognita, we built a Torvum 3' transcript catalogue. One-quarter of a 454 full run resulted in 205,591 quality-filtered reads. De novo assembly yielded 24,922 contigs and 11,875 singletons. Similarity searches of the S. torvum transcript tags catalogue produced 12,344 annotations. A 30,0000 features custom combimatrix chip was then designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples resulting in 390 differentially expressed genes (DEG). We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena. An in-silico validation strategy was developed based on assessment of sequence similarity among Torvum probes and eggplant expressed sequences available in public repositories. GO term enrichment analyses with the 390 Torvum DEG revealed enhancement of several processes as chitin catabolism and sesquiterpenoids biosynthesis, while no GO term enrichment was found with eggplant DEG.The genes identified from S. torvum catalogue, bearing high similarity to known nematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism. CONCLUSIONS: By combining 454 pyrosequencing and microarray technology we were able to conduct a cost-effective global transcriptome profiling in a non-model species. In addition, the development of an in silico validation strategy allowed to further extend the use of the custom chip to a related species and to assess by comparison the expression of selected genes without major concerns of artifacts. The expression profiling of S. torvum responses to nematode infection points to sesquiterpenoids and chitinases as major effectors of nematode resistance. The availability of the long sequence tags in S. torvum catalogue will allow precise identification of active nematocide/nematostatic compounds and associated enzymes posing the basis for exploitation of these resistance mechanisms in other species.


Subject(s)
Gene Expression Profiling , Host-Parasite Interactions/genetics , Solanum/genetics , Solanum/parasitology , Tylenchoidea/physiology , Animals , Chitinases/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Sequence Analysis, RNA , Sesquiterpenes/metabolism , Solanum/enzymology , Solanum/physiology , Species Specificity
16.
Front Plant Sci ; 3: 165, 2012.
Article in English | MEDLINE | ID: mdl-22855688

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNA molecules produced from hairpin structures and involved in gene expression regulation with major roles in plant development and stress response. Although each annotated miRNA in miRBase (www.mirbase.org) is a single defined sequence with no further details on possible variable sequence length, isomiRs - namely the population of variants of miRNAs coming from the same precursors - have been identified in several species and could represent a way of broadening the regulatory network of the cell. Next-gen-based sequencing makes it possible to comprehensively and accurately assess the entire miRNA repertoire including isomiRs. The aim of this work was to survey the complexity of the peach miRNome by carrying out Illumina high-throughput sequencing of miRNAs in three replicates of five biological samples arising from a set of different peach organs and/or phenological stages. Three hundred-ninety-two isomiRs (miRNA and miRNA*-related) corresponding to 26 putative miRNA coding loci, have been highlighted by mirDeep-P and analyzed. The presence of the same isomiRs in different biological replicates of a sample and in different tissues demonstrates that the generation of most of the detected isomiRs is not random. The degree of mature sequence heterogeneity is very different for each individual locus. Results obtained in the present work can thus contribute to a deeper view of the miRNome complexity and to better explore the mechanism of action of these tiny regulators.

17.
Biol Direct ; 7: 15, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22569316

ABSTRACT

MicroRNAs (miRNAs) are endogenous small non-coding RNAs of about 20-24 nt, known to play key roles in post-transcriptional gene regulation, that can be coded either by intergenic or intragenic loci. Intragenic (exonic and intronic) miRNAs can exert a role in the transcriptional regulation and RNA processing of their host gene. Moreover, the possibility that the biogenesis of exonic miRNAs could destabilize the corresponding protein-coding transcript and reduce protein synthesis makes their characterization very intriguing and suggests a possible novel mechanism of post-transcriptional regulation of gene expression. This work was designed to carry out the computational identification of putative exonic miRNAs in 30 plant species and the analysis of possible mechanisms involved in their regulation. The results obtained represent a useful starting point for future studies on the complex networks involved in microRNA-mediated gene regulation in plants.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , MicroRNAs/genetics , Plants/genetics , Computational Biology , Exons , Expressed Sequence Tags , MicroRNAs/metabolism , Plants/metabolism
18.
PLoS One ; 6(10): e26421, 2011.
Article in English | MEDLINE | ID: mdl-22028874

ABSTRACT

Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes. We used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A. The resulting sequence assembly was used to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes. Repetitive elements account for more than 75% of the genome. Gene content was estimated considering non-redundant reads showing at least one match to ESTs or proteins. The results indicate that the coding fraction represents 1.08% and 1.3% of the short and long arm respectively, projecting the number of genes of the whole chromosome to approximately 5,000. 195 candidate miRNA precursors belonging to 16 miRNA families were identified. The 5A genes were used to search for syntenic relationships between grass genomes. The short arm is closely related to Brachypodium chromosome 4, sorghum chromosome 8 and rice chromosome 12; the long arm to regions of Brachypodium chromosomes 4 and 1, sorghum chromosomes 1 and 2 and rice chromosomes 9 and 3. From these similarities it was possible to infer the virtual gene order of 392 (5AS) and 1,480 (5AL) genes of chromosome 5A, which was compared to, and found to be largely congruent with the available physical map of this chromosome.


Subject(s)
Chromosomes, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis/methods , Triticum/genetics , Computational Biology , Conserved Sequence/genetics , Contig Mapping , DNA Transposable Elements/genetics , Gene Order/genetics , Genes, Plant/genetics , MicroRNAs/genetics , Nucleic Acid Amplification Techniques , Synteny/genetics
19.
BMC Genomics ; 11: 595, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20969764

ABSTRACT

BACKGROUND: Many plant species have been investigated in the last years for the identification and characterization of the corresponding miRNAs, nevertheless extensive studies are not yet available on barley (at the time of this writing). To extend and to update information on miRNAs and their targets in barley and to identify candidate polymorphisms at miRNA target sites, the features of previously known plant miRNAs have been used to systematically search for barley miRNA homologues and targets in the publicly available ESTs database. Matching sequences have then been related to Unigene clusters on which most of this study was based. RESULTS: One hundred-fifty-six microRNA mature sequences belonging to 50 miRNA families have been found to significantly match at least one EST sequence in barley. As expected on the basis of phylogenetic relations, miRNAs putatively orthologous to those of Triticum are significantly over-represented inside the set of identified barley microRNA mature sequences. Many previously known and several putatively new miRNA/target pairs have been identified. When the predicted microRNA targets were grouped into functional categories, biological processes previously known to be regulated by miRNAs, such as development and response to biotic and abiotic stress, have been highlighted and most of the target molecular functions were related to transcription regulation. Candidate microRNA coding genes have been reported and genetic variation (SNPs/indels) both in functional regions of putative miRNAs (mature sequence) and at miRNA target sites has been found. CONCLUSIONS: This study has provided an update of the information on barley miRNAs and their targets representing a foundation for future studies. Many of previously known plant microRNAs have homologues in barley with expected important roles during development, nutrient deprivation, biotic and abiotic stress response and other important physiological processes. Putative polymorphisms at miRNA target sites have been identified and they can represent an interesting source for the identification of functional genetic variability.


Subject(s)
Computational Biology/methods , Hordeum/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Base Sequence , Expressed Sequence Tags , Genes, Plant/genetics , Genetic Variation , MicroRNAs/chemistry , Molecular Sequence Data , Multigene Family , Nucleic Acid Conformation , Polymorphism, Single Nucleotide/genetics , RNA Precursors/chemistry , RNA Precursors/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...