Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 37(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29301859

ABSTRACT

Intramembrane-cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain-containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL-mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.


Subject(s)
Carrier Proteins/metabolism , Cytosol/metabolism , Metalloproteases/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Amino Acid Sequence , Apoptosis , HEK293 Cells , HeLa Cells , Humans , Mitophagy , Sequence Homology
2.
Mol Cell ; 64(1): 148-162, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27642048

ABSTRACT

Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca2+ homeostasis.


Subject(s)
Calcium Channels/metabolism , Cerebellum/metabolism , Corpus Striatum/metabolism , Hippocampus/metabolism , Metalloendopeptidases/genetics , Mitochondria/metabolism , Neurons/metabolism , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , ATPases Associated with Diverse Cellular Activities , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Death , Cerebellum/pathology , Corpus Striatum/pathology , Gene Expression Regulation , HEK293 Cells , Hippocampus/pathology , Homeostasis/genetics , Humans , Ion Transport , Metalloendopeptidases/deficiency , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neurons/pathology , Protein Interaction Mapping , Signal Transduction
3.
EMBO J ; 33(6): 578-93, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24550258

ABSTRACT

The dynamic network of mitochondria fragments under stress allowing the segregation of damaged mitochondria and, in case of persistent damage, their selective removal by mitophagy. Mitochondrial fragmentation upon depolarisation of mitochondria is brought about by the degradation of central components of the mitochondrial fusion machinery. The OMA1 peptidase mediates the degradation of long isoforms of the dynamin-like GTPase OPA1 in the inner membrane. Here, we demonstrate that OMA1-mediated degradation of OPA1 is a general cellular stress response. OMA1 is constitutively active but displays strongly enhanced activity in response to various stress insults. We identify an amino terminal stress-sensor domain of OMA1, which is only present in homologues of higher eukaryotes and which modulates OMA1 proteolysis and activation. OMA1 activation is associated with its autocatalyic degradation, which initiates from both termini of OMA1 and results in complete OMA1 turnover. Autocatalytic proteolysis of OMA1 ensures the reversibility of the response and allows OPA1-mediated mitochondrial fusion to resume upon alleviation of stress. This differentiated stress response maintains the functional integrity of mitochondria and contributes to cell survival.


Subject(s)
Enzyme Activation/physiology , GTP Phosphohydrolases/metabolism , Metalloproteases/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/metabolism , Models, Biological , Stress, Physiological/physiology , Animals , Centrifugation, Density Gradient , Electrophoresis, Polyacrylamide Gel , Fibroblasts , Immunoblotting , Metalloproteases/genetics , Mice , Mice, Knockout , Microscopy, Fluorescence , Mitochondrial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...