Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 209(Pt 16): 3079-90, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16888057

ABSTRACT

Although previous investigations have shown that wing coloration is an important component of social signaling in butterflies, the contribution of opsin evolution to sexual wing color dichromatism and interspecific divergence remains largely unexplored. Here we report that the butterfly Lycaena rubidus has evolved sexually dimorphic eyes due to changes in the regulation of opsin expression patterns to match the contrasting life histories of males and females. The L. rubidus eye contains four visual pigments with peak sensitivities in the ultraviolet (UV; lambdamax=360 nm), blue (B; lambdamax=437 nm and 500 nm, respectively) and long (LW; lambdamax=568 nm) wavelength range. By combining in situ hybridization of cloned opsin-encoding cDNAs with epi-microspectrophotometry, we found that all four opsin mRNAs and visual pigments are expressed in the eyes in a sex-specific manner. The male dorsal eye, which contains only UV and B (lambdamax=437 nm) visual pigments, indeed expresses two short wavelength opsin mRNAs, UVRh and BRh1. The female dorsal eye, which also has the UV and B (lambdamax=437 nm) visual pigments, also contains the LW visual pigment, and likewise expresses UVRh, BRh1 and LWRh mRNAs. Unexpectedly, in the female dorsal eye, we also found BRh1 co-expressed with LWRh in the R3-8 photoreceptor cells. The ventral eye of both sexes, on the other hand, contains all four visual pigments and expresses all four opsin mRNAs in a non-overlapping fashion. Surprisingly, we found that the 500 nm visual pigment is encoded by a duplicate blue opsin gene, BRh2. Further, using molecular phylogenetic methods we trace this novel blue opsin gene to a duplication event at the base of the Polyommatine+Thecline+Lycaenine radiation. The blue opsin gene duplication may help explain the blueness of blue lycaenid butterflies.


Subject(s)
Butterflies/genetics , Evolution, Molecular , Eye/metabolism , Insect Proteins/genetics , Rod Opsins/genetics , Sex Characteristics , Animal Communication , Animals , Butterflies/anatomy & histology , Cloning, Molecular , Eye/anatomy & histology , Female , Gene Duplication , Gene Expression Regulation , In Situ Hybridization , Insect Proteins/metabolism , Male , Phylogeny , RNA, Messenger/metabolism , Retina/metabolism , Rod Opsins/metabolism , Sequence Analysis, DNA
2.
Cell Tissue Res ; 321(3): 443-58, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16034628

ABSTRACT

Lepidopterans display biological rhythms associated with egg laying, eclosion and flight activity but the photoreceptors that mediate these behavioural patterns are largely unknown. To further our progress in identifying candidate light-input channels for the lepidopteran circadian system, we have developed polyclonal antibodies against ultraviolet (UV)-, blue- and extraretinal long-wavelength (LW)-sensitive opsins and examined opsin immunoreactivity in the adult optic lobes of four hawk moths, Manduca sexta, Acherontia atropos, Agrius convolvuli and Hippotion celerio. Outside the retina, UV and blue opsin protein expression is restricted to the adult stemmata, with no apparent expression elsewhere in the brain. Melatonin, which is known to have a seasonal influence on reproduction and behaviour, is expressed with opsins in adult stemmata together with visual arrestin and chaoptin. By contrast, the LW opsin protein is not expressed in the retina or stemmata but rather exhibits a distinct and widespread distribution in dorsal and ventral neurons of the optic lobes. The lamina, medulla, lobula and lobula plate, accessory medulla and adjacent neurons innervating this structure also exhibit strong LW opsin immunoreactivity. Together with the adult stemmata, these neurons appear to be functional photoreceptors, as visual arrestin, chaoptin and melatonin are also co-expressed with LW opsin. These findings are the first to suggest a role for three spectrally distinct classes of opsin in the extraretinal detection of changes in ambient light and to show melatonin-mediated neuroendocrine output in the entrainment of sphingid moth circadian and/or photoperiodic rhythms.


Subject(s)
Light , Melatonin/analysis , Moths , Protein Isoforms/analysis , Rod Opsins/analysis , Animals , Immunohistochemistry , Moths/anatomy & histology , Moths/chemistry , Neurons/chemistry , Neurons/ultrastructure , Optic Lobe, Nonmammalian/chemistry , Optic Lobe, Nonmammalian/ultrastructure , Photoperiod , Photoreceptor Cells, Invertebrate/chemistry , Retina/chemistry , Retina/cytology , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...