Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1467, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233585

ABSTRACT

Heart failure (HF) is a major burden worldwide, and new therapies are urgently needed. Gene therapy is a promising new approach to treat myocardial diseases. However, current cardiac gene delivery methods for producing global myocardial effects have been inefficient. The aim of this study was to develop an endovascular, reproducible, and clinically applicable gene transfer method for global left ventricular (LV) transduction. Domestic pigs (n = 52) were used for the experiments. Global LV myocardium coverage was achieved by three retrograde injections into the three main LV vein branches. The distribution outcome was significantly improved by simultaneous transient occlusions of the corresponding coronary arteries and the main anastomotic veins of the retroinjected veins. The achieved cardiac distribution was visualized first by administering Indian Ink solution. Secondly, AdLacZ (2 × 1012vp) and AAV2-GFP (2 × 1013vg) gene transfers were performed to study gene transduction efficacy of the method. By retrograde injections with simultaneous coronary arterial occlusions, both adenovirus (Ad) and adeno-associated virus (AAV) vectors were shown to deliver an efficient transduction of the LV. We conclude that retrograde injections into the three main LV veins is a potential new approach for a global LV gene transfer.


Subject(s)
Adenoviridae Infections , Adenoviridae , Humans , Adenoviridae/genetics , Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Myocardium , Genetic Vectors/genetics
2.
J Vis Exp ; (195)2023 05 12.
Article in English | MEDLINE | ID: mdl-37246887

ABSTRACT

Despite the progress in treatments, cardiovascular diseases are still one of the biggest causes of mortality and morbidity worldwide. Gene therapy-based therapeutic angiogenesis is a promising approach for treating patients with significant symptoms, despite optimal pharmacological therapy and invasive procedures. However, many promising cardiovascular gene therapy techniques have failed to accomplish expectations in clinical trials. One explanation is a mismatch between preclinical and clinical endpoints used to measure efficacy. In animal models, the emphasis has usually been on easily quantifiable endpoints, such as the number and area of the capillary vessels calculated from histological sections. Apart from mortality and morbidity, endpoints in clinical trials are subjective, such as exercise tolerance and quality of life. However, the preclinical and clinical endpoints likely measure different aspects of the applied therapy. Nevertheless, both types of endpoints are required to develop successful therapeutic approaches. In clinics, the main goal is always to alleviate patients' symptoms and improve their prognosis and quality of life. To achieve better predictive data from preclinical studies, endpoint measurements must be better matched to those in clinical studies. Here, we introduce a protocol for a clinically relevant treadmill exercise test in pigs. This study aims to: (1) provide a reliable exercise test in pigs that can be used to evaluate the safety and functional efficacy of gene therapy and other novel therapies, and (2) better match the endpoints between preclinical and clinical studies.


Subject(s)
Cardiovascular System , Exercise Test , Swine , Animals , Quality of Life
3.
Gene Ther ; 29(10-11): 643-652, 2022 11.
Article in English | MEDLINE | ID: mdl-35132204

ABSTRACT

Therapeutic angiogenesis induced by gene therapy is a promising approach to treat patients suffering from severe coronary artery disease. In small experimental animals, adeno-associated viruses (AAVs) have shown good transduction efficacy and long-term transgene expression in heart muscle and other tissues. However, it has been difficult to achieve cardiac-specific angiogenic effects with AAV vectors. We tested the hypothesis whether AAV2 gene transfer (1 × 1013 vg) of vascular endothelial growth factor B (VEGF-B186) together with immunosuppressive corticosteroid treatment can induce long-term cardiac-specific therapeutic effects in the porcine ischemic heart. Gene transfers were delivered percutaneously using direct intramyocardial injections, improving targeting and avoiding direct contact with blood, thus reducing the likelihood of immediate immune reactions. After 1- and 6-month time points, the capillary area was analyzed, myocardial perfusion reserve (MPR) was measured with radiowater positron emission tomography ([15O]H2O-PET), and fluorodeoxyglucose ([18F]FDG) uptake was used to evaluate myocardial viability. Clinical chemistry and immune responses were analyzed using standard methods. After 1- and 6-month follow-up, AAV2-VEGF-B186 gene transfer failed to induce angiogenesis and improve myocardial perfusion and viability. Here, we show that inflammatory responses attenuated the therapeutic effect of AAV2 gene transfer by significantly reducing successful transduction and long-term gene expression despite the efforts to reduce the likelihood of immune reactions and the use of targeted local gene transfer methods.


Subject(s)
Genetic Vectors , Vascular Endothelial Growth Factor B , Animals , Swine , Vascular Endothelial Growth Factor B/genetics , Genetic Vectors/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/therapeutic use , Dependovirus/genetics , Genetic Therapy/methods , Myocardium
SELECTION OF CITATIONS
SEARCH DETAIL
...