Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 106(46): 19211-8, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19901326

ABSTRACT

Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.


Subject(s)
Carbon/metabolism , Climate Change , Ecosystem , Animals , Fishes , Oceans and Seas
2.
Philos Trans A Math Phys Eng Sci ; 366(1882): 3919-45, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18757282

ABSTRACT

The oceans sequester carbon from the atmosphere partly as a result of biological productivity. Over much of the ocean surface, this productivity is limited by essential nutrients and we discuss whether it is likely that sequestration can be enhanced by supplying limiting nutrients. Various methods of supply have been suggested and we discuss the efficacy of each and the potential side effects that may develop as a result. Our conclusion is that these methods have the potential to enhance sequestration but that the current level of knowledge from the observations and modelling carried out to date does not provide a sound foundation on which to make clear predictions or recommendations. For ocean fertilization to become a viable option to sequester CO2, we need more extensive and targeted fieldwork and better mathematical models of ocean biogeochemical processes. Models are needed both to interpret field observations and to make reliable predictions about the side effects of large-scale fertilization. They would also be an essential tool with which to verify that sequestration has effectively taken place. There is considerable urgency to address climate change mitigation and this demands that new fieldwork plans are developed rapidly. In contrast to previous experiments, these must focus on the specific objective which is to assess the possibilities of CO2 sequestration through fertilization.


Subject(s)
Conservation of Natural Resources/methods , Disasters/prevention & control , Ecosystem , Engineering/trends , Greenhouse Effect , Marine Biology/methods , Oceans and Seas
3.
Adv Mar Biol ; 44: 1-142, 2003.
Article in English | MEDLINE | ID: mdl-12846041

ABSTRACT

We present the most extensive study to date of globally compiled and analysed weight-specific growth rates in marine epi-pelagic invertebrate metazoan zooplankton. Using specified selection criteria, we analyse growth rates from a variety of zooplanktonic taxa, including both holo- and mero-planktonic forms, from over 110 published studies. Nine principal taxonomic groups are considered, the copepods (number of individual data points (n) = 2,528); crustaceans other than copepods (n = 253); cnidarians (n = 77); ctenophores (n = 27); chaetognaths (n = 87); pteropods (n = 8); polychaetes (n = 12); thaliaceans (n = 88); and larvaceans (n = 91). The copepods are further examined by subdividing them into broadcasters or sac-spawning species, and as nauplii (N1-N6), copepodites (C1-C5) and adults (C6). For each taxonomic group relationships between growth, temperature and body weight are examined using a variety of methods. Weight-specific growth tends to increase with increasing temperature and with decreasing body weight in the crustacean group. Growth does not relate to body weight in the case of chaetognaths and larvaceans, but does increase with temperature. In the cnidarian and ctenophore groups growth does not relate to temperature, but is negatively related to body size. For the thaliceans growth increases with both increasing body weight and temperature. In the entire broadcasting copepod data set, weight-specific growth increases with increasing temperature and decreasing body weight. In sac-spawners, growth increases with increasing temperature, and increases with decreasing body weight at temperatures below 20 degrees C, but decreases with body weight at temperatures above this. Comparison between the different taxa shows important differences and similarities. Our extensive synthesis of data generally confirms that larvaceans, pteropods, cnidarians and ctenophores have rates of weight-specific growth that are typically greater than the copepods, chaetognaths and other crustaceans of similar carbon weight. For the cnidarians, ctenophores and larvaceans growth rates are almost always greater than the general relationship describing copepod growth, and are also at the upper limits or beyond the maximum rates for copepods of a similar weight. For the pteropods, growth rates are generally greater than those of copepods, although the data set was limited to a single carnivorous species in a single study (i.e. Clione limacina). The thaliaceans have the highest growth rates for animals with body weights greater than around 1 mg C ind-1, with rates of up to 2.1 d-1 for Pegea bicaudata. Whilst the larvaceans can achieve rates of 2 d-1 in warm tropical waters (28 degrees C), and as high as > 3 d-1 for < 0.2 mg C individual-1 animals of Oikopleura diocia. These are possibly the highest rates every recorded in epi-pelagic metazoans. Reasons for the differences between taxonomic groups are discussed in relation to intrinsic and extrinsic factors and limitations. The importance of this investigation not only lies in it being the most comprehensive overview of patterns of growth to date, but because the data set highlight the gaps in measurements and current knowledge. We examine the inadequacies in the current data sets, and in the methods being used to measure growth and production. Most of the data are for animals collected from coastal and estuarine waters, and it is clear that for a fuller understanding there is an urgent need for work in the open ocean, and for investigations outside temperate regions. There is also a need to explore the role of food availability, and how food concentrations in incubations, and under food saturation, relate to those experienced in the natural environment.


Subject(s)
Zooplankton/growth & development , Animals , Body Weight , Copepoda/growth & development , Food Supply , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...