Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38929635

ABSTRACT

Together, lower back and neck pain are among the leading causes of acquired disability worldwide and have experienced a marked increase over the past 25 years. Paralleled with the increasing aging population and the rise in chronic disease, this trend is only predicted to contribute to the growing global burden. In the context of cervical neck pain, this symptom is most often a manifestation of cervical degenerative disc disease (DDD). Traditionally, multilevel neck pain related to DDD that is recalcitrant to both physical and medical therapy can be treated with a procedure known as cervical corpectomy. Presently, there are many flavors of cervical corpectomy; however, the overarching goal is the removal of the pain-generating disc via the employment of the modern anterior approach. In this review, we will briefly detail the pathophysiological mechanism behind DDD, overview the development of the anterior approach, and discuss the current state of treatment options for said pathology. Furthermore, this review will also add to the current body of literature surrounding updated indications, surgical techniques, and patient outcomes related to cervical corpectomy. Finally, our discussion ends with highlighting the future direction of cervical corpectomy through the introduction of the "skip corpectomy" and distractable mesh cages.

2.
Oncoimmunology ; 9(1): 1785608, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32923149

ABSTRACT

Chimeric antigen receptor (CAR) T cells show remarkable therapeutic effects in some hematological malignancies. However, CAR T cells can also cause life-threatening side effects. In order to minimize off-target and on-target/off-tumor reactions, improve safety, enable controllability, provide high flexibility, and increase tumor specificity, we established a novel humanized artificial receptor platform termed RevCARs. RevCAR genes encode for small surface receptors lacking any antigen-binding moiety. Steering of RevCAR T cells occurs via bispecific targeting molecules (TMs). The small size of RevCAR-encoding genes allows the construction of polycistronic vectors. Here, we demonstrate that RevCAR T cells efficiently kill tumor cells, can be steered by TMs, flexibly redirected against multiple targets, and used for combinatorial targeting following the "OR" and "AND" gate logic.


Subject(s)
Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
3.
Oncoimmunology ; 9(1): 1743036, 2020.
Article in English | MEDLINE | ID: mdl-32426176

ABSTRACT

Induction or selection of radioresistant cancer (stem) cells following standard radiotherapy is presumably one of the major causes for recurrence of metastatic disease. One possibility to prevent tumor relapse is the application of targeted immunotherapies including, e.g., chimeric antigen receptor (CAR) T cells. In light of long-term remissions, it is highly relevant to clarify whether radioresistant cancer cells are susceptible to CAR T cell-mediated killing. To answer this question, we evaluated the anti-tumor activity of the switchable universal chimeric antigen receptor (UniCAR) system against highly radioresistant head and neck squamous cell carcinoma cells both in vitro and in vivo. Following specific UniCAR T cell engagement via EGFR or CD98 target modules, T cell effector mechanisms were induced including secretion of pro-inflammatory cytokines, up-regulation of granzyme B and perforin, as well as T cell proliferation. CD98- or EGFR-redirected UniCAR T cells further possess the capability to efficiently lyse radioresistant tumor cells. Observed anti-tumor effects were comparable to those against the radiosensitive parental cell lines. Finally, redirected UniCAR T cells significantly inhibited the growth of radioresistant cancer cells in immunodeficient mice. Taken together, our obtained data underline that the UniCAR system is able to overcome radioresistance. Thus, it represents an attractive technology for the development of combined radioimmunotherapeutic approaches that might improve the outcome of patients with metastatic radioresistant tumor diseases.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Animals , Humans , Mice , Neoplasm Recurrence, Local , Neoplasms/radiotherapy , Neoplasms/therapy , Radiation Tolerance , Receptors, Chimeric Antigen , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...