Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 3: 1516, 2013.
Article in English | MEDLINE | ID: mdl-23519113

ABSTRACT

We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 µW, which corresponded to a power density of 193.5 µW cm(-2) and a volumetric power of 161 µW mL(-1). We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat.


Subject(s)
Bioelectric Energy Sources , Glucose Oxidase/metabolism , Glucose/metabolism , Animals , Biosensing Techniques , Body Fluids/metabolism , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...