Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 10(8): 230661, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37538743

ABSTRACT

A new arthropod, Carimersa neptuni gen. et sp. nov., is described from the Silurian (Wenlock Series) Herefordshire Konservat-Lagerstätte, UK. The head bears pedunculate eyes and five pairs of appendages. Triflagellate antennae are followed by two pairs of uniramous limbs each with an endopod bearing a pronounced gnathobasic basipod. The posterior two pairs of head limbs and all trunk limbs bear an endopod, exopod and filamentous exite. The trunk consists of 10 appendage-bearing segments followed by an apodous abdomen of four segments. The arthropod resolves as sister taxon to Kodymirus and Eozetetes + Aglaspidida. It is the first representative of Vicissicaudata reported from the Herefordshire Lagerstätte and the first Silurian example with well-preserved appendages. The preservation of a cluster of radiolarians apparently captured by the trunk appendages is the first direct association of predator and prey discovered in the Herefordshire fauna, and suggests that Carimersa was a nektobenthic form that used its gnathobasic basipods in microdurophagy.

3.
PeerJ ; 8: e10431, 2020.
Article in English | MEDLINE | ID: mdl-33335810

ABSTRACT

Xiphosurans are aquatic chelicerates with a fossil record extending into the Early Ordovician and known from a total of 88 described species, four of which are extant. Known for their apparent morphological conservatism, for which they have gained notoriety as supposed 'living fossils', recent analyses have demonstrated xiphosurans to have an ecologically diverse evolutionary history, with several groups moving into non-marine environments and developing morphologies markedly different from those of the modern species. The combination of their long evolutionary and complex ecological history along with their paradoxical patterns of morphological stasis in some clades and experimentation among others has resulted in Xiphosura being of particular interest for macroevolutionary study. Phylogenetic analyses have shown the current taxonomic framework for Xiphosura-set out in the Treatise of Invertebrate Paleontology in 1955-to be outdated and in need of revision, with several common genera such as Paleolimulus Dunbar, 1923 and Limulitella Størmer, 1952 acting as wastebasket taxa. Here, an expanded xiphosuran phylogeny is presented, comprising 58 xiphosuran species as part of a 158 taxon chelicerate matrix coded for 259 characters. Analysing the matrix under both Bayesian inference and parsimony optimisation criteria retrieves a concordant tree topology that forms the basis of a genus-level systematic revision of xiphosuran taxonomy. The genera Euproops Meek, 1867, Belinurus König, 1820, Paleolimulus, Limulitella, and Limulus are demonstrated to be non-monophyletic and the previously synonymized genera Koenigiella Raymond, 1944 and Prestwichianella Cockerell, 1905 are shown to be valid. In addition, nine new genera (Andersoniella gen. nov., Macrobelinurus gen. nov., and Parabelinurus gen. nov. in Belinurina; Norilimulus gen. nov. in Paleolimulidae; Batracholimulus gen. nov. and Boeotiaspis gen. nov. in Austrolimulidae; and Allolimulus gen. nov., Keuperlimulus gen. nov., and Volanalimulus gen. nov. in Limulidae) are erected to accommodate xiphosuran species not encompassed by existing genera. One new species, Volanalimulus madagascarensis gen. et sp. nov., is also described. Three putative xiphosuran genera-Elleria Raymond, 1944, Archeolimulus Chlupác, 1963, and Drabovaspis Chlupác, 1963-are determined to be non-xiphosuran arthropods and as such are removed from Xiphosura. The priority of Belinurus König, 1820 over Bellinurus Pictet, 1846 is also confirmed. This work is critical for facilitating the study of the xiphosuran fossil record and is the first step in resolving longstanding questions regarding the geographic distribution of the modern horseshoe crab species and whether they truly represent 'living fossils'. Understanding the long evolutionary history of Xiphosura is vital for interpreting how the modern species may respond to environmental change and in guiding conservation efforts.

4.
R Soc Open Sci ; 7(10): 201037, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33204464

ABSTRACT

Myriapods were, together with arachnids, the earliest animals to occupy terrestrial ecosystems, by at least the Silurian. The origin of myriapods and their land colonization have long remained puzzling until euthycarcinoids, an extinct group of aquatic arthropods considered amphibious, were shown to be stem-group myriapods, extending the lineage to the Cambrian and evidencing a marine-to-terrestrial transition. Although possible respiratory structures comparable to the air-breathing tracheal system of myriapods are visible in several euthycarcinoids, little is known about the mechanism by which they respired. Here, we describe a new euthycarcinoid from Upper Devonian alluvio-lagoonal deposits of Belgium. Synchrotron-based elemental X-ray analyses were used to extract all available information from the only known specimen. Sulfur X-ray fluorescence (XRF) mapping and spectroscopy unveil sulfate evaporation stains, spread over the entire slab, suggestive of a very shallow-water to the terrestrial environment prior to burial consistent with an amphibious lifestyle. Trace metal XRF mapping reveals a pair of ventral spherical cavities or chambers on the second post-abdominal segment that do not compare to any known feature in aquatic arthropods, but might well play a part in air-breathing. Our data provide additional support for amphibious lifestyle in euthycarcinoids and show that different respiratory strategies were used during the marine-to-terrestrial transition in the myriapod lineage.

5.
Curr Biol ; 30(21): 4316-4321.e2, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32916114

ABSTRACT

Arachnids are the second most successful terrestrial animal group after insects [1] and were one of the first arthropod clades to successfully invade land [2]. Fossil evidence for this transition is limited, with the majority of arachnid clades first appearing in the terrestrial fossil record. Furthermore, molecular clock dating has suggested a Cambrian-Ordovician terrestrialization event for arachnids [3], some 60 Ma before their first fossils in the Silurian, although these estimates assume that arachnids evolved from a fully aquatic ancestor. Eurypterids, the sister clade to terrestrial arachnids [4-6], are known to have undergone major macroecological shifts in transitioning from marine to freshwater environments during the Devonian [7, 8]. Discoveries of apparently subaerial eurypterid trackways [9, 10] have led to the suggestion that eurypterids were even able to venture on land and possibly breathe air [11]. However, modern horseshoe crabs undertake amphibious excursions onto land to reproduce [12], rendering trace fossil evidence alone inconclusive. Here, we present details of the respiratory organs of Adelophthalmus pyrrhae sp. nov. from the Carboniferous of Montagne Noire, France [13], revealed through micro computed tomography (µ-CT) imaging. Pillar-like trabeculae on the dorsal surface of each gill lamella indicate eurypterids were capable of subaerial breathing, suggesting that book gills are the direct precursors to book lungs while vascular ancillary respiratory structures known as Kiemenplatten represent novel air-breathing structures. The discovery of air-breathing structures in eurypterids indicates that characters permitting terrestrialization accrued in the arachnid stem lineage and suggests the Cambrian-Ordovician ancestor of arachnids would also have been semi-terrestrial.


Subject(s)
Biological Evolution , Respiration , Respiratory System/anatomy & histology , Scorpions/physiology , Animals , Aquatic Organisms/physiology , Fossils/anatomy & histology , Fossils/diagnostic imaging , Horseshoe Crabs/anatomy & histology , Horseshoe Crabs/physiology , Respiratory System/diagnostic imaging , Scorpions/anatomy & histology , X-Ray Microtomography
6.
Geobiology ; 18(5): 560-565, 2020 09.
Article in English | MEDLINE | ID: mdl-32347003

ABSTRACT

The chemical composition of fossil soft tissues is a potentially powerful and yet underutilized tool for elucidating the affinity of problematic fossil organisms. In some cases, it has proven difficult to assign a problematic fossil even to the invertebrates or vertebrates (more generally chordates) based on often incompletely preserved morphology alone, and chemical composition may help to resolve such questions. Here, we use in situ Raman microspectroscopy to investigate the chemistry of a diverse array of invertebrate and vertebrate fossils from the Pennsylvanian Mazon Creek Lagerstätte of Illinois, and we generate a ChemoSpace through principal component analysis (PCA) of the in situ Raman spectra. Invertebrate soft tissues characterized by chitin (polysaccharide) fossilization products and vertebrate soft tissues characterized by protein fossilization products plot in completely separate, non-overlapping regions of the ChemoSpace, demonstrating the utility of certain soft tissue molecular signatures as biomarkers for the original soft tissue composition of fossil organisms. The controversial problematicum Tullimonstrum, known as the Tully Monster, groups with the vertebrates, providing strong evidence of a vertebrate rather than invertebrate affinity.


Subject(s)
Invertebrates , Vertebrates , Animals , Fossils , Illinois , Phylogeny
7.
BMC Evol Biol ; 19(1): 8, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30621579

ABSTRACT

BACKGROUND: Chasmataspidids are a rare group of chelicerate arthropods known from 12 species assigned to ten genera, with a geologic range extending from the Ordovician to the Devonian. The Late Ordovician (Richmondian) fauna of the Big Hill Lagerstätte includes a new species of chasmataspidid represented by 55 specimens. This taxon is only the second chasmataspidid described from the Ordovician and preserves morphological details unknown from any of the previously described species. RESULTS: The new chasmataspidid species is described as Hoplitaspis hiawathai gen. et sp. nov.. Comparison with all other known chasmataspidids indicates that Hoplitaspis occupies an intermediate morphological position between the Ordovician Chasmataspis and the Silurian-Devonian diploaspidids. While the modification of appendage VI into a broad swimming paddle allies Hoplitaspis to the Diploaspididae, the paddle lacks the anterior 'podomere 7a' found in other diploaspidids and shows evidence of having been derived from a Chasmataspis-like chelate appendage. Other details, such as the large body size and degree of expression of the first tergite, show clear affinities with Chasmataspis, providing strong support for chasmataspidid monophyly. CONCLUSIONS: The large body size and well-developed appendage armature of Hoplitaspis reveals that chasmataspidids occupied a greater breadth of ecological roles than previously thought, with the abundance of available specimens indicating that Hoplitaspis was an important component of the local community. The miniaturization and ecological limiting of diploaspidids potentially coincides with the major radiation of eurypterids and may suggest some degree of competition between the two groups. The geographic distribution of chasmataspidid species suggests the group may have originated in Laurentia and migrated to the paleocontinents of Baltica and Siberia as tectonic processes drew the paleocontinents into close proximity.


Subject(s)
Arthropods/classification , Biodiversity , Animals , Fossils , Michigan , Phenotype , Phylogeny , Principal Component Analysis , Time Factors
8.
Biol Rev Camb Philos Soc ; 93(2): 811-826, 2018 05.
Article in English | MEDLINE | ID: mdl-28944555

ABSTRACT

Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long-term palaeontological data often show that large-scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short-term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short- and long-term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi-generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population-level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant.


Subject(s)
Biological Evolution , Extinction, Biological , Animals , Genetic Fitness
9.
Trends Ecol Evol ; 32(6): 452-463, 2017 06.
Article in English | MEDLINE | ID: mdl-28365045

ABSTRACT

The new and emerging field of phylogenetic paleoecology leverages the evolutionary relationships among species to explain temporal and spatial changes in species diversity, abundance, and distribution in deep time. This field is poised for rapid progress as knowledge of the evolutionary relationships among fossil species continues to expand. In particular, this approach will lend new insights to many of the longstanding questions in evolutionary biology, such as: the relationships among character change, ecology, and evolutionary rates; the processes that determine the evolutionary relationships among species within communities and along environmental gradients; and the phylogenetic signal underlying ecological selectivity in background and mass extinctions and in major evolutionary radiations.


Subject(s)
Biological Evolution , Ecology , Phylogeny , Extinction, Biological , Fossils
10.
Evolution ; 71(1): 95-110, 2017 01.
Article in English | MEDLINE | ID: mdl-27783385

ABSTRACT

Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems.


Subject(s)
Arthropods/physiology , Biodiversity , Biological Evolution , Extinction, Biological , Animals , Fossils
11.
Arthropod Struct Dev ; 46(3): 395-418, 2017 May.
Article in English | MEDLINE | ID: mdl-27240897

ABSTRACT

Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, chelicerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the appendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further modified within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may also show reduced somite counts, but reconstructing segmentation in these animals remains challenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa. We also present our observations within the concept of pseudotagma, whereby the true tagmata - the prosoma and opisthosoma - can be defined on a fundamental change in the limb series while pseudotagmata, such as the cephalosoma/proterosoma, are expressed as divisions in sclerites covering the body without an accompanying change in the appendages.


Subject(s)
Arachnida/anatomy & histology , Body Patterning , Animals , Arachnida/growth & development , Scorpions/anatomy & histology , Scorpions/growth & development
12.
Nature ; 532(7600): 496-9, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-26982721

ABSTRACT

Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.


Subject(s)
Fossils , Phylogeny , Vertebrates/classification , Animal Fins/anatomy & histology , Animals , Extinction, Biological , Eye/anatomy & histology , Gastrointestinal Tract/anatomy & histology , Illinois , Lampreys/classification , Notochord/anatomy & histology , Tooth/anatomy & histology , Vertebrates/anatomy & histology
13.
BMC Evol Biol ; 15: 169, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26324341

ABSTRACT

BACKGROUND: Eurypterids are a diverse group of chelicerates known from ~250 species with a sparse Ordovician record currently comprising 11 species; the oldest fully documented example is from the Sandbian of Avalonia. The Middle Ordovician (Darriwilian) fauna of the Winneshiek Lagerstätte includes a new eurypterid species represented by more than 150 specimens, including some juveniles, preserved as carbonaceous cuticular remains. This taxon represents the oldest described eurypterid, extending the documented range of the group back some 9 million years. RESULTS: The new eurypterid species is described as Pentecopterus decorahensis gen. et sp. nov.. Phylogenetic analysis places Pentecopterus at the base of the Megalograptidae, united with the two genera previously assigned to this family by the shared possession of two or more pairs of spines per podomere on prosomal appendage IV, a reduction of all spines except the pair on the penultimate podomere of appendage V, and an ornamentation of guttalate scales, including angular scales along the posterior margin of the dorsal tergites and in longitudinal rows along the tergites. The morphology of Pentecopterus reveals that the Megalograptidae are representatives of the derived carcinosomatoid clade and not basal eurypterids as previously interpreted. CONCLUSIONS: The relatively derived position of megalograptids within the eurypterids indicates that most eurypterid clades were present by the Middle Ordovician. Eurypterids either underwent an explosive radiation soon after their origination, or earlier representatives, perhaps Cambrian in age, remain to be discovered. The available instars of Pentecopterus decorahensis suggest that eurypterids underwent extreme appendage differentiation during development, a potentially unique condition among chelicerates. The high degree of appendage specialization in eurypterids is only matched by arachnids within chelicerates, supporting a sister taxon relationship between them.


Subject(s)
Arthropods/anatomy & histology , Arthropods/classification , Fossils , Animals , Iowa , Phylogeny
14.
Naturwissenschaften ; 102(9-10): 63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26391849

ABSTRACT

Euchelicerates were a major component of Palaeozoic faunas, but their basal relationships are uncertain: it has been suggested that Xiphosura-xiphosurids (horseshoe crabs) and similar Palaeozoic forms, the synziphosurines-may not represent a natural group. Basal euchelicerates are rare in the fossil record, however, particularly during the initial Ordovician radiation of the group. Here, we describe Winneshiekia youngae gen. et sp. nov., a euchelicerate from the Middle Ordovician (Darriwilian) Winneshiek Lagerstätte of Iowa, USA. Winneshiekia shares features with both xiphosurans (a large, semicircular carapace and ophthalmic ridges) and dekatriatan euchelicerates such as chasmataspidids and eurypterids (an opisthosoma of 13 tergites). Phylogenetic analysis resolves Winneshiekia at the base of Dekatriata, as sister taxon to a clade comprising chasmataspidids, eurypterids, arachnids, and Houia. Winneshiekia provides further support for the polyphyly of synziphosurines, traditionally considered the stem lineage to xiphosurid horseshoe crabs, and by extension the paraphyly of Xiphosura. The new taxon reveals the ground pattern of Dekatriata and provides evidence of character polarity in chasmataspidids and eurypterids. The Winneshiek Lagerstätte thus represents an important palaeontological window into early chelicerate evolution.


Subject(s)
Arthropods/anatomy & histology , Arthropods/classification , Fossils/anatomy & histology , Phylogeny , Animals , Iowa
15.
Biol Lett ; 11(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26289442

ABSTRACT

Pterygotid eurypterids have traditionally been interpreted as active, high-level, visual predators; however, recent studies of the visual system and cheliceral morphology of the pterygotid Acutiramus contradict this interpretation. Here, we report similar analyses of the pterygotids Erettopterus, Jaekelopterus and Pterygotus, and the pterygotid sister taxon Slimonia. Representative species of all these genera have more acute vision than A. cummingsi. The visual systems of Jaekelopterus rhenaniae and Pterygotus anglicus are comparable to that of modern predatory arthropods. All species of Jaekelopterus and Pterygotus have robust crushing chelicerae, morphologically distinct from the weaker slicing chelicerae of Acutiramus. Vision in Erettopterus osiliensis and Slimonia acuminata is more acute than in Acutiramus cummingsi, but not to the same degree as in modern active predators, and the morphology of the chelicerae in these genera suggests a grasping function. The pterygotids evolved with a shift in ecology from generalized feeder to specialized predator. Pterygotid eurypterids share a characteristic morphology but, although some were top predators, their ecology differs radically between genera.


Subject(s)
Arthropods/anatomy & histology , Biological Evolution , Compound Eye, Arthropod/anatomy & histology , Fossils , Hoof and Claw/anatomy & histology , Animals , Arthropods/classification , Arthropods/physiology , Predatory Behavior
16.
Naturwissenschaften ; 100(9): 811-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23893175

ABSTRACT

Kodymirus vagans Chlupác and Havlícek in Sb Geol Ved Paleontol 6:7-20, 1965 is redescribed as an aglaspidid-like arthropod bearing a single pair of enlarged raptorial appendages, which are shown to be the second cephalic appendage. A number of early Palaeozoic arthropods, recognized from predominantly Cambrian Konservat-Lagerstätten, are known to have borne single pairs of large raptorial appendages. They are well established for the iconic yet problematic anomalocarids, the common megacheirans, and the ubiquitous bivalved Isoxys. Further taxa, such as fuxianhuiids and Branchiocaris, have been reported to have single pairs of specialized cephalic appendages, i.e., appendages differentiated from a largely homonomous limbs series, members of which act in metachronal motion. The homology of these raptorial appendages across these Cambrian arthropods has often been assumed, despite differences in morphology. Thus, anomalocaridids, for instance, have long multiarticulate "frontal appendages" consisting of many articles bearing an armature of paired serial spines, while megacheirans and Isoxys have short "great appendages" consisting of few articles with well-developed endites or elongate fingers. Homology of these appendages would require them to belong to the same cephalic segment. We argue based on morphological evidence that, to the contrary, the raptorial appendages of some of these taxa can be shown to belong to different cephalic segments and are the result of convergence in life habits. K. vagans is yet another important example for this, representing an instance for this morphology from a marginal marine environment.


Subject(s)
Arthropods/anatomy & histology , Fossils , Animal Structures/anatomy & histology , Animals , Arthropods/classification , Phylogeny , Species Specificity
17.
BMC Evol Biol ; 13: 98, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23663507

ABSTRACT

BACKGROUND: Few studies on eurypterids have taken into account morphological changes that occur throughout postembryonic development. Here two species of eurypterid are described from the Pragian Beartooth Butte Formation of Cottonwood Canyon in Wyoming and included in a phylogenetic analysis. Both species comprise individuals from a number of instars, and this allows for changes that occur throughout their ontogeny to be documented, and how ontogenetically variable characters can influence phylogenetic analysis to be tested. RESULTS: The two species of eurypterid are described as Jaekelopterus howelli (Kjellesvig-Waering and Størmer, 1952) and Strobilopterus proteus sp. nov. Phylogenetic analysis places them within the Pterygotidae and Strobilopteridae respectively, both families within the Eurypterina. Jaekelopterus howelli shows positive allometry of the cheliceral denticles throughout ontogeny, while a number of characteristics including prosomal appendage length, carapace shape, lateral eye position, and relative breadth all vary during the growth of Strobilopterus proteus. CONCLUSIONS: The ontogeny of Strobilopterus proteus shares much in common with that of modern xiphosurans, however certain characteristics including apparent true direct development suggest a closer affinity to arachnids. The ontogenetic development of the genital appendage also supports the hypothesis that the structure is homologous to the endopods of the trunk limbs of other arthropods. Including earlier instars in the phylogenetic analysis is shown to destabilise the retrieved topology. Therefore, coding juveniles as individual taxa in an analysis is shown to be actively detrimental and alternative ways of coding ontogenetic data into phylogenetic analyses should be explored.


Subject(s)
Evolution, Molecular , Scorpions/genetics , Animals , Fossils , Phylogeny , Scorpions/anatomy & histology , Scorpions/classification , Wood/parasitology
18.
Biol Lett ; 6(2): 265-9, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-19828493

ABSTRACT

Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates.


Subject(s)
Arthropods/growth & development , Biodiversity , Extinction, Biological , Fossils , Models, Biological , Paleontology , Vertebrates/growth & development , Animals , Arthropods/anatomy & histology , Body Size , Phylogeny , Species Specificity , Vertebrates/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...