Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Reprogram ; 21(3): 115-121, 2019 06.
Article in English | MEDLINE | ID: mdl-31084436

ABSTRACT

Functional reprogramming of a differentiated cell toward pluripotent cell may have long-term applications in numerous aspects, especially in regenerative medicine. Evidences accumulating from recent studies suggest that cellular extracts from stem cells or pluripotent cells can induce epigenetic reprogramming and facilitate pluripotency in otherwise highly differentiated cell types. Epigenetic reprogramming using cellular extracts has gained increasing attention and applied to recognize the functional factors, acquire the target cell types, and explain the mechanism of reprogramming. Now, more and more researches have proved that cellular extract treatment is an important strategy of cellular reprogramming. Thus, this review mainly focused on the progresses and potential mechanisms in epigenetic reprogramming using cellular extracts.


Subject(s)
Cell Differentiation/drug effects , Cell Extracts/pharmacology , Cellular Reprogramming , Epigenesis, Genetic , Stem Cells/chemistry , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Humans , Regenerative Medicine
2.
Anim Reprod Sci ; 186: 21-30, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28935242

ABSTRACT

The efficiency of in vitro embryo production remains low compared with that observed in vivo. Recent studies have independently shown that cyclic adenosine monophosphate (cAMP) modulation prior to in vitro maturation (IVM) supplementation improves oocyte developmental competence. In this context, special cAMP modulators have been applied during IVM as promising alternatives to improve this biotechnology. Accordingly, this study was conducted to evaluate the effects of treatment with cilostazol, a PDE3 inhibitor, during pre-IVM culture on oocyte meiotic maturation in yak. Immature yak cumulus-oocyte complexes (COCs) were treated in vitro without (control) or with 5µM cilostazol for 0, 2, or 4h prior to IVM. Results showed that the presence of cilostazol in pre-IVM medium significantly increased the percentages of oocytes at metaphase II stage compared with that in the control groups (P<0.05). Moreover, pre-IVM with cilostazol significantly enhanced intraoocyte cAMP and glutathione (GSH) levels at the pre-IVM or IVM phase relative to the no pre-IVM groups (P<0.05). After in vitro fertilization (IVF) and parthenogenetic activation (PA), the developmental competences of oocytes and embryo quality were improved significantly after pre-IVM with cilostazol compared with the control groups (P<0.05), given that the cleavage and blastocyst formation rates and the total number of blastocyst cells were increased. The presence of cilostazol also increased the levels of mRNA expression for adenylate cyclase 3 (ADCY3) and protein kinase 1 (PKA1), as well as decreased the abundance of phosphodiesterase 3A (PDE3A) in COCs and IVF blastocysts, compared with their control counterparts (P<0.05). The results demonstrated that the meiotic progression of immature yak oocytes could be reversibly affected by cAMP modulators. By contrast, treatment with cilostazol during pre-IVM positively affected the developmental competence of yak oocytes, probably by improving intraoocyte cAMP and GSH levels and regulating mRNA expression patterns. We concluded that appropriate treatment with cilostazol during pre-IVM would be beneficial for oocyte maturation in vitro.


Subject(s)
Cattle , Cyclic AMP/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Meiosis/drug effects , Oocytes/physiology , Tetrazoles/pharmacology , Animals , Cattle/embryology , Cilostazol , Embryo Culture Techniques/veterinary , Gene Expression Regulation/drug effects , Oocytes/drug effects , Phosphodiesterase 3 Inhibitors/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Pol J Microbiol ; 64(1): 29-36, 2015.
Article in English | MEDLINE | ID: mdl-26094313

ABSTRACT

To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.


Subject(s)
Cattle/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Rumen/microbiology , Animals , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Transcriptome
4.
Asian-Australas J Anim Sci ; 28(1): 20-4, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25557672

ABSTRACT

Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak). We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA) IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR) technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05). The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05) of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

5.
Zygote ; 23(1): 19-26, 2015 Feb.
Article in English | MEDLINE | ID: mdl-23759515

ABSTRACT

Interspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear-cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine-yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and 'corrected' the gene expression patterns of yak iSCNT embryos.


Subject(s)
Butyric Acid/pharmacology , Cattle/embryology , Cloning, Organism , Embryo, Mammalian/drug effects , Gene Expression Regulation, Developmental/drug effects , Animals , Blastocyst/drug effects , DNA (Cytosine-5-)-Methyltransferases/genetics , Embryo, Mammalian/physiology , Embryonic Development/drug effects , Embryonic Development/genetics , Histone Deacetylase 2/genetics , Insulin-Like Growth Factor I/genetics , Nuclear Transfer Techniques , Parthenogenesis
6.
Asian-Australas J Anim Sci ; 27(12): 1684-90, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25358360

ABSTRACT

Estrogen and its receptors are essential hormones for normal reproductive function in males and females during developmental stage. To better understand the effect of estrogen receptor (ER) gene in yak (Bos grunniens), reverse transcription-polymerase chain reaction (PCR) was carried out to clone ERα and ERß genes. Bioinformatics methods were used to analyze the evolutionary relationship between yaks and other species, and real-time PCR was performed to identify the mRNA expression of ERα and ERß. Sequence analysis showed that the ER open reading frames (ORFs) encoded 596 and 527 amino acid proteins. The yak ERα and ERß shared 45.3% to 99.5% and 53.9% to 99.1% protein sequence identities with other species homologs, respectively. Real-time PCR analysis revealed that ERα and ERß were expressed in a variety of tissues, but the expression level of ERα was higher than that of ERß in all tissues, except testis. The mRNA expression of ERα was highest in the mammary gland, followed by uterus, oviduct, and ovary, and lowest in the liver, kidney, lung, testis, spleen, and heart. The ERß mRNA level was highest in the ovary; intermediary in the uterus and oviduct; and lowest in the heart, liver, spleen, lung, kidney, mammary gland, and testis. The identification and tissue distribution of ER genes in yaks provides a foundation for the further study on their biological functions.

7.
Cell Reprogram ; 16(3): 215-22, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24738992

ABSTRACT

The functional reprogramming of a differentiated cell to a pluripotent state presents potential beneficial applications in disease mechanisms and regenerative medicine. Epigenetic modifications enable differentiated cells to perpetuate molecular memory to retain their identity. Therefore, the aim of this study was to investigate the reprogramming modification of yak fibroblast cells that were permeabilized and incubated in the extracts of mesenchymal stem cells derived from mice adipose tissue [adipose-derived stem cells (ADSCs)]. According to the results, the treatment of ADSC extracts promoted colony formation. Moreover, pluripotent gene expression was associated with the loss of repressive histone modifications and increased global demethylation. The genes Col1a1 and Col1a2, which are typically found in differentiated cells only, demonstrated decreased expression and increased methylation in the 5'-flanking regulatory regions. Moreover, yak fibroblast cells that were exposed to ADSC extracts resulted in significantly different eight-cell and blastocyst formation rates of cloned embryos compared with their untreated counterparts. This investigation provides the first evidence that nuclear reprogramming of yak fibroblast cells is modified after the ADSC extract treatment. This research also presents a methodology for studying the dedifferentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells toward a pluripotent state without genetic alteration.


Subject(s)
Cellular Reprogramming , DNA Methylation , Gene Expression , Induced Pluripotent Stem Cells/metabolism , 5' Flanking Region , Acetylation , Animals , Base Sequence , Cattle , Cells, Cultured , Collagen/genetics , DNA Primers , Female , Histones/metabolism , Induced Pluripotent Stem Cells/cytology , Mice , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...