Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Int Immunopharmacol ; 128: 111549, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266449

ABSTRACT

Immunotherapy has emerged as a revolutionary approach in cancer therapy, and recent advancements hold significant promise for breast cancer (BCa) management. Employing the patient's immune system to combat BCa has become a focal point in immunotherapeutic investigations. Strategies such as immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and targeting the tumor microenvironment (TME) have disclosed encouraging clinical outcomes. ICIs, particularly programmed cell death protein 1 (PD-1)/PD-L1 inhibitors, exhibit efficacy in specific BCa subtypes, including triple-negative BCa (TNBC) and human epidermal growth factor receptor 2 (HER2)-positive cancers. ACT approaches, including tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy, showed promising clinical outcomes in enhancing tumor recognition and elimination. Targeting the TME through immune agonists and oncolytic viruses signifies a burgeoning field of research. While challenges persist in patient selection, resistance mechanisms, and combination therapy optimization, these novel immunotherapies hold transformative potential for BCa treatment. Continued research and clinical trials are imperative to refine and implement these innovative approaches, paving the way for improved outcomes and revolutionizing the management of BCa. This review provides a concise overview of the latest immunotherapies (2023 studies) in BCa, highlighting their potential and current status.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Immunotherapy , Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating , Combined Modality Therapy , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment , B7-H1 Antigen/metabolism
2.
Front Immunol ; 14: 1292861, 2023.
Article in English | MEDLINE | ID: mdl-38077354

ABSTRACT

Immunotherapy has revolutionized the conventional treatment approaches for colorectal cancer (CRC), offering new therapeutic prospects for patients. Liquid biopsy has shown significant potential in early screening, diagnosis, and postoperative monitoring by analyzing circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). In the era of immunotherapy, liquid biopsy provides additional possibilities for guiding immune-based treatments. Emerging technologies such as mass spectrometry-based detection of neoantigens and flow cytometry-based T cell sorting offer new tools for liquid biopsy, aiming to optimize immune therapy strategies. The integration of liquid biopsy with immunotherapy holds promise for improving treatment outcomes in colorectal cancer patients, enabling breakthroughs in early diagnosis and treatment, and providing patients with more personalized, precise, and effective treatment strategies.


Subject(s)
Colorectal Neoplasms , Neoplastic Cells, Circulating , Humans , Biomarkers, Tumor/genetics , Liquid Biopsy , Immunotherapy , Neoplastic Cells, Circulating/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy , Colorectal Neoplasms/genetics
3.
Front Immunol ; 14: 1266450, 2023.
Article in English | MEDLINE | ID: mdl-38111570

ABSTRACT

Breast cancer (BCa) is known as a complex and prevalent disease requiring the development of novel anticancer therapeutic approaches. Bispecific antibodies (BsAbs) have emerged as a favorable strategy for BCa treatment due to their unique ability to target two different antigens simultaneously. By targeting tumor-associated antigens (TAAs) on cancer cells, engaging immune effector cells, or blocking critical signaling pathways, BsAbs offer enhanced tumor specificity and immune system involvement, improving anti-cancer activity. Preclinical and clinical studies have demonstrated the potential of BsAbs in BCa. For example, BsAbs targeting human epidermal growth factor receptor 2 (HER2) have shown the ability to redirect immune cells to HER2-positive BCa cells, resulting in effective tumor cell killing. Moreover, targeting the PD-1/PD-L1 pathway by BsAbs has demonstrated promising outcomes in overcoming immunosuppression and enhancing immune-mediated tumor clearance. Combining BsAbs with existing therapeutic approaches, such as chemotherapy, targeted therapies, or immune checkpoint inhibitors (ICIs), has also revealed synergistic effects in preclinical models and early clinical trials, emphasizing the usefulness and potential of BsAbs in BCa treatment. This review summarizes the latest evidence about BsAbs in treating BCa and the challenges and opportunities of their use in BCa.


Subject(s)
Antibodies, Bispecific , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Antigens, Neoplasm , Signal Transduction
4.
Front Immunol ; 14: 1241208, 2023.
Article in English | MEDLINE | ID: mdl-37920463

ABSTRACT

Immunotherapy has made significant advances in the treatment of colorectal cancer (CRC), revolutionizing the therapeutic landscape and highlighting the indispensable role of the tumor immune microenvironment. However, some CRCs have shown poor response to immunotherapy, prompting investigation into the underlying reasons. It has been discovered that certain chemotherapeutic agents possess immune-stimulatory properties, including the induction of immunogenic cell death (ICD), the generation and processing of non-mutated neoantigens (NM-neoAgs), and the B cell follicle-driven T cell response. Based on these findings, the concept of inducing chemotherapy has been introduced, and the combination of inducing chemotherapy and immunotherapy has become a standard treatment option for certain cancers. Clinical trials have confirmed the feasibility and safety of this approach in CRC, offering a promising method for improving the efficacy of immunotherapy. Nevertheless, there are still many challenges and difficulties ahead, and further research is required to optimize its use.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , T-Lymphocytes , Colorectal Neoplasms/drug therapy , Tumor Microenvironment
5.
Front Oncol ; 13: 1276654, 2023.
Article in English | MEDLINE | ID: mdl-38023258

ABSTRACT

Colorectal cancer (CRC) is one of the most lethal human malignancies, and with the growth of societies and lifestyle changes, the rate of people suffering from it increases yearly. Important factors such as genetics, family history, nutrition, lifestyle, smoking, and alcohol can play a significant role in increasing susceptibility to this cancer. On the other hand, the metabolism of several macromolecules is also involved in the fate of tumors and immune cells. The evidence discloses that cholesterol and its metabolism can play a role in the pathogenesis of several cancers because there appears to be an association between cholesterol levels and CRC, and cholesterol-lowering drugs may reduce the risk. Furthermore, changes or mutations of some involved genes in cholesterol metabolism, such as CYP7A1 as well as signaling pathways, such as mitogen-activated protein kinase (MAPK), can play a role in CRC pathogenesis. This review summarized and discussed the role of cholesterol in the pathogenesis of CRC as well as available cholesterol-related therapeutic approaches in CRC.

6.
Front Immunol ; 14: 1237764, 2023.
Article in English | MEDLINE | ID: mdl-37790928

ABSTRACT

As one of the main threats to human life (the fourth most dangerous and prevalent cancer), colorectal cancer affects many people yearly, decreases patients' quality of life, and causes irreparable financial and social damages. In addition, this type of cancer can metastasize and involve the liver in advanced stages. However, current treatments can't completely eradicate this disease. Chemotherapy and subsequent surgery can be mentioned among the current main treatments for this disease. Chemotherapy has many side effects, and regarding the treatment of this type of tumor, chemotherapy can lead to liver damage, such as steatohepatitis, steatosis, and sinus damage. These damages can eventually lead to liver failure and loss of its functions. Therefore, it seems that other treatments can be used in addition to chemotherapy to increase its efficiency and reduce its side effects. Biological therapies and immunotherapy are one of the leading suggestions for combined treatment. Antibodies (immune checkpoint blockers) and cell therapy (DC and CAR-T cells) are among the immune system-based treatments used to treat tumors. Immunotherapy targets various aspects of the tumor that may lead to 1) the recruitment of immune cells, 2) increasing the immunogenicity of tumor cells, and 3) leading to the elimination of inhibitory mechanisms established by the tumor. Therefore, immunotherapy can be used as a complementary treatment along with chemotherapy. This review will discuss different chemotherapy and immunotherapy methods for colorectal cancer. Then we will talk about the studies that have dealt with combined treatment.


Subject(s)
Colorectal Neoplasms , Quality of Life , Humans , Immunotherapy/methods , Combined Modality Therapy , Immune System/pathology , Colorectal Neoplasms/drug therapy
7.
Int Immunopharmacol ; 124(Pt B): 110981, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769534

ABSTRACT

The Immunoscore (ISc) is an emerging immune-based scoring system that has shown potential in improving the prognostic and therapeutic management of patients with solid tumors. The ISc evaluates the immune infiltrate within the tumor microenvironment (TME) and has demonstrated superior predictive ability compared to traditional histopathological parameters. It has been particularly promising in colorectal, lung, breast, and melanoma cancers. This review summarizes the clinical evidence supporting the prognostic value of the ISc and explores its potential in guiding therapeutic decisions, such as the selection of adjuvant therapies and recognizing patients likely to profit from immune checkpoint inhibitors (ICIs). The challenges and future directions of ISc implementation are also discussed, including standardization and integration into routine clinical practice.


Subject(s)
Melanoma , Humans , Prognosis , Melanoma/diagnosis , Melanoma/therapy , Immune Checkpoint Inhibitors , Tumor Microenvironment
8.
Surg Open Sci ; 15: 44-53, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37637243

ABSTRACT

The emergence of immunotherapy has revolutionized the traditional treatment paradigm of colorectal cancer (CRC). Among them, immune checkpoint blockade has become the first-line treatment for metastatic colorectal cancer (mCRC) and has made significant progress in the treatment of locally advanced colorectal cancer (LACRC). We reviewed a series of clinical trials that have made breakthrough progress. We will emphasize the breakthrough progress in achieving organ preservation in patients with high microsatellite instability or DNA mismatch repair deficiency (MSI-H/dMMR), and based on this, we propose the concept of selective surgery, which includes selectively removing or preserving lymph nodes, with the aim of proving our idea through more research in the future.

9.
J Nanobiotechnology ; 21(1): 247, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37528366

ABSTRACT

Lymph node metastasis is a frequent occurrence in a variety of tumour forms and poses an enormous challenge to cancer treatment. This process is critical to the development of the disease and is frequently linked to a poor prognosis. Over 90% of cancerous cells move through lymph nodes, making them important entry routes for the spread of cancer cells. The prognosis of cancer patients is significantly impacted by lymph node metastases, which also affects treatment choices. Targeting lymph node metastases presents numerous difficulties for conventional medication delivery techniques. It is still very difficult to selectively target cancer cells in lymph nodes without risking injury to healthy organs and unforeseen consequences. Additionally, systemic delivery of drugs is hampered by the slow flow rate of lymphatic vessels. Chemotherapeutic medicines' poor solubility and stability further reduce their effectiveness when taken orally. Additionally, the extracellular matrix that surrounds lymph node tumours is extensive, which makes it difficult for conventional pharmaceutical delivery systems to reach cancer cells. The development of nanocarriers for precise drug delivery to LNs has attracted a lot of interest to overcome these obstacles. Most solid tumours first spread through the lymphatic system, hence effective drug administration to these tissues is essential for better therapeutic results. Nanocarriers have several benefits, including the capacity to pass through barriers like blood-brain barriers and membranes to reach the lymphatic system. High medication dosages can be enclosed thanks to the physicochemical characteristics of nanocarriers, such as their higher surface-to-volume ratio. Additionally, ligands, antibodies, polymers, or biological molecules can be attached to nanocarrier surfaces to change their properties, allowing for the targeted delivery of lymph node epithelial cells. This use of nanocarriers for drug delivery maximizes on-target effects and related adverse effects while improving the effectiveness of medication delivery to target locations. More research and development in this field is needed to optimize nanocarrier design, increase targeting capabilities, and expand clinical applications for better cancer care.


Subject(s)
Drug Delivery Systems , Nanoparticles , Humans , Lymphatic Metastasis/pathology , Lymphatic System , Lymph Nodes/pathology , Blood-Brain Barrier , Nanoparticles/chemistry
10.
Front Oncol ; 13: 1149551, 2023.
Article in English | MEDLINE | ID: mdl-37287924

ABSTRACT

Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.

11.
Drug Deliv ; 30(1): 2219427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37288799

ABSTRACT

The pharmacological approach to treating gastrointestinal diseases is suffering from various challenges. Among such gastrointestinal diseases, ulcerative colitis manifests inflammation at the colon site specifically. Patients suffering from ulcerative colitis notably exhibit thin mucus layers that offer increased permeability for the attacking pathogens. In the majority of ulcerative colitis patients, the conventional treatment options fail in controlling the symptoms of the disease leading to distressing effects on the quality of life. Such a scenario is due to the failure of conventional therapies to target the loaded moiety into specific diseased sites in the colon. Targeted carriers are needed to address this issue and enhance the drug effects. Conventional nanocarriers are mostly readily cleared and have nonspecific targeting. To accumulate the desired concentration of the therapeutic candidates at the inflamed area of the colon, smart nanomaterials with responsive nature have been explored recently that include pH responsive, reactive oxygen species responsive (ROS), enzyme responsive and thermo - responsive smart nanocarrier systems. The formulation of such responsive smart nanocarriers from nanotechnology scaffolds has resulted in the selective release of therapeutic drugs, avoiding systemic absorption and limiting the undesired delivery of targeting drugs into healthy tissues. Recent advancements in the field of responsive nanocarrier systems have resulted in the fabrication of multi-responsive systems i.e. dual responsive nanocarriers and derivitization that has increased the biological tissues and smart nanocarrier's interaction. In addition, it has also led to efficient targeting and significant cellular uptake of the therapeutic moieties. Herein, we have highlighted the latest status of the responsive nanocarrier drug delivery system, its applications for on-demand delivery of drug candidates for ulcerative colitis, and the prospects are underpinned.


Subject(s)
Colitis, Ulcerative , Molecular Targeted Therapy , Humans , Colitis, Ulcerative/drug therapy , Drug Carriers , Drug Delivery Systems/methods , Nanoparticles , Quality of Life
12.
Cancers (Basel) ; 15(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37046703

ABSTRACT

The metabolism of tumors and immune cells in the tumor microenvironment (TME) can affect the fate of cancer and immune responses. Metabolic reprogramming can occur following the activation of metabolic-related signaling pathways, such as phosphoinositide 3-kinases (PI3Ks) and the mammalian target of rapamycin (mTOR). Moreover, various tumor-derived immunosuppressive metabolites following metabolic reprogramming also affect antitumor immune responses. Evidence shows that intervention in the metabolic pathways of tumors or immune cells can be an attractive and novel treatment option for cancer. For instance, administrating inhibitors of various signaling pathways, such as phosphoinositide 3-kinases (PI3Ks), can improve T cell-mediated antitumor immune responses. However, dual pathway inhibitors can significantly suppress tumor growth more than they inhibit each pathway separately. This review discusses the latest metabolic interventions by dual pathway inhibitors as well as the advantages and disadvantages of this therapeutic approach.

13.
Front Endocrinol (Lausanne) ; 14: 1260491, 2023.
Article in English | MEDLINE | ID: mdl-38260135

ABSTRACT

Evidence demonstrated that bones, liver, and lungs are the most common metastasis sites in some human malignancies, especially in prostate and breast cancers. Bone is the third most frequent target for spreading tumor cells among these organs and tissues. Patients with bone-metastatic cancers face a grim prognosis characterized by short median survival time. Current treatments have proven insufficient, as they can only inhibit metastasis or tumor progression within the bone tissues rather than providing a curative solution. Gaining a more profound comprehension of the interplay between tumor cells and the bone microenvironment (BME) is of utmost importance in tackling this issue. This knowledge will pave the way for developing innovative diagnostic and therapeutic approaches. This review summarizes the mechanisms underlying bone metastasis and discusses the clinical aspects of this pathologic condition. Additionally, it highlights emerging therapeutic interventions aimed at enhancing the quality of life for patients affected by bone-metastatic cancers. By synthesizing current research, this review seeks to shed light on the complexities of bone metastasis and offer insights for future advancements in patient care.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Male , Humans , Quality of Life , Bone Neoplasms/therapy , Bone and Bones , Knowledge , Tumor Microenvironment
14.
Cancers (Basel) ; 14(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36010836

ABSTRACT

Cancer immunotherapy has received more and more attention from cancer researchers over the past few decades. Various methods such as cell therapy, immune checkpoint blockers, and cancer vaccines alone or in combination therapies have achieved relatively satisfactory results in cancer therapy. Among these immunotherapy-based methods, cancer vaccines alone have not yet had the necessary efficacy in the clinic. Therefore, nanomaterials have increased the efficacy and ef-fectiveness of cancer vaccines by increasing their half-life and durability, promoting tumor mi-croenvironment (TME) reprogramming, and enhancing their anti-tumor immunity with minimal toxicity. In this review, according to the latest studies, the structure and different types of nanovaccines, the mechanisms of these vaccines in cancer treatment, as well as the advantages and disadvantages of these nanovaccines are discussed.

15.
Front Immunol ; 13: 770465, 2022.
Article in English | MEDLINE | ID: mdl-35450073

ABSTRACT

Cancer immunotherapy is exploited for the treatment of disease by modulating the immune system. Since the conventional in vivo animal and 2D in vitro models insufficiently recapitulate the complex tumor immune microenvironment (TIME) of the original tumor. In addition, due to the involvement of the immune system in cancer immunotherapy, more physiomimetic cancer models, such as patient-derived organoids (PDOs), are required to evaluate the efficacy of immunotherapy agents. On the other hand, the dynamic interactions between the neoplastic cells and non-neoplastic host components in the TIME can promote carcinogenesis, tumor metastasis, cancer progression, and drug resistance of cancer cells. Indeed, tumor organoid models can properly recapitulate the TIME by preserving endogenous stromal components including various immune cells, or by adding exogenous immune cells, cancer-associated fibroblasts (CAFs), vasculature, and other components. Therefore, organoid culture platforms could model immunotherapy responses and facilitate the immunotherapy preclinical testing. Here, we discuss the various organoid culture approaches for the modeling of TIME and the applications of complex tumor organoids in testing cancer immunotherapeutics and personalized cancer immunotherapy.


Subject(s)
Neoplasms , Organoids , Animals , Humans , Immunotherapy , Neoplasms/pathology , Precision Medicine , Tumor Microenvironment
16.
Front Oncol ; 11: 769305, 2021.
Article in English | MEDLINE | ID: mdl-34888246

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.

17.
Exp Cell Res ; 408(2): 112858, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34600901

ABSTRACT

In contrast to conventional cancer treatment, in personalized cancer medicine each patient receives a specific treatment. The response to therapy, clinical outcomes, and tumor behavior such as metastases, tumor progression, carcinogenesis can be significantly affected by the heterogeneous tumor microenvironment (TME) and interpersonal differences. Therefore, using native tumor microenvironment mimicking models is necessary to improving personalized cancer therapy. Both in vitro 2D cell culture and in vivo animal models poorly recapitulate the heterogeneous tumor (immune) microenvironments of native tumors. The development of 3D culture models, native tumor microenvironment mimicking models, made it possible to evaluate the chemoresistance of tumor tissue and the functionality of drugs in the presence of cell-extracellular matrix and cell-cell interactions in a 3D construction. Various personalized tumor models have been designed to preserving the native tumor microenvironment, including patient-derived tumor xenografts and organoid culture strategies. In this review, we will discuss the patient-derived organoids as a native tumor microenvironment mimicking model in personalized cancer therapy. In addition, we will also review the potential and the limitations of organoid culture systems for predicting patient outcomes and preclinical drug screening. Finally, we will discuss immunotherapy drug screening in tumor organoids by using microfluidic technology.


Subject(s)
Extracellular Matrix/genetics , Neoplasms/therapy , Organoids/immunology , Tumor Microenvironment/genetics , Cell Culture Techniques , Extracellular Matrix/immunology , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/pathology , Precision Medicine , Tumor Microenvironment/immunology
18.
Oxid Med Cell Longev ; 2021: 2951697, 2021.
Article in English | MEDLINE | ID: mdl-34471463

ABSTRACT

PURPOSE: Although doxorubicin chemotherapeutic drug is commonly used to treat various solid and hematological tumors, its clinical use is restricted because of its adverse effects on the normal cells/tissues, especially cardiotoxicity. The use of resveratrol may mitigate the doxorubicin-induced cardiotoxic effects. For this aim, we systematically reviewed the potential chemoprotective effects of resveratrol against the doxorubicin-induced cardiotoxicity. METHODS: In the current study, a systematic search was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline for the identification of all relevant studies on "the role of resveratrol on doxorubicin-induced cardiotoxicity" in the electronic databases of Web of Science, PubMed, and Scopus up to March 2021 using search terms in their titles and abstracts. Two hundred and eighteen articles were screened in accordance with a predefined set of inclusion and exclusion criteria. Finally, 33 eligible articles were included in this systematic review. RESULTS: The in vitro and in vivo findings demonstrated a decreased cell survival, increased mortality, decreased heart weight, and increased ascites in the doxorubicin-treated groups compared to the control groups. The combined treatment of resveratrol and doxorubicin showed an opposite pattern than the doxorubicin-treated groups alone. Furthermore, this chemotherapeutic agent induced the biochemical and histopathological changes on the cardiac cells/tissue; however, the results (for most of the cases) revealed that these alterations induced by doxorubicin were reversed near to normal levels (control groups) by resveratrol coadministration. CONCLUSION: The results of this systematic review stated that coadministration of resveratrol alleviates the doxorubicin-induced cardiotoxicity. Resveratrol exerts these chemoprotective effects through several main mechanisms of antioxidant, antiapoptosis, and anti-inflammatory.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Apoptosis/drug effects , Cardiotoxicity/drug therapy , Doxorubicin/adverse effects , Resveratrol/therapeutic use , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cardiotoxicity/etiology , Humans , Resveratrol/pharmacology
19.
Cancer Sci ; 112(7): 2592-2606, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33938090

ABSTRACT

Immunotherapy has revolutionized cancer treatment, however, not all tumor types and patients are completely responsive to this approach. Establishing predictive pre-clinical models would allow for more accurate and practical immunotherapeutic drug development. Mouse models are extensively used as in vivo system for biomedical research. However, due to the significant differences between rodents and human, it is impossible to translate most of the findings from mouse models to human. Pharmacological development and advancing personalized medicine using patient-derived xenografts relies on producing mouse models in which murine cells and genes are substituted with their human equivalent. Humanized mice (HM) provide a suitable platform to evaluate xenograft growth in the context of a human immune system. In this review, we discussed recent advances in the generation and application of HM models. We also reviewed new insights into the basic mechanisms, pre-clinical evaluation of onco-immunotherapies, current limitations in the application of these models as well as available improvement strategies. Finally, we pointed out some issues for future studies.


Subject(s)
Disease Models, Animal , Immunotherapy , Neoplasms/therapy , Xenograft Model Antitumor Assays , Animals , Antibodies, Monoclonal/therapeutic use , Cytokines/metabolism , Drug Development , Genetic Engineering , Graft Rejection/immunology , Graft vs Host Disease/prevention & control , Humans , Immunotherapy, Adoptive/methods , Intercellular Signaling Peptides and Proteins/metabolism , Killer Cells, Natural/immunology , Mice , Mice, SCID , Neoplasms/immunology , Precision Medicine , Translational Research, Biomedical , Transplantation, Heterologous
20.
Int Immunopharmacol ; 96: 107627, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33862552

ABSTRACT

Breast cancer (BC) is the most common cancer among women between the ages of 20 and 50, affecting more than 2.1 million people and causing the annual death of more than 627,000 women worldwide. Based on the available knowledge, the immune system and its components are involved in the pathogenesis of several malignancies, including BC. Cancer immunobiology suggests that immune cells can play a dual role and induce anti-tumor or immunosuppressive responses, depending on the tumor microenvironment (TME) signals. The most important effector immune cells with anti-tumor properties are natural killer (NK) cells, B, and T lymphocytes. On the other hand, immune and non-immune cells with regulatory/inhibitory phenotype, including regulatory T cells (Tregs), regulatory B cells (Bregs), tolerogenic dendritic cells (tDCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), and regulatory natural killer cells (NKregs), can promote the growth and development of tumor cells by inhibiting anti-tumor responses, inducing angiogenesis and metastasis, as well as the expression of inhibitory molecules and suppressor mediators of the immune system. However, due to the complexity of the interaction and the modification in the immune cells' phenotype and the networking of the immune responses, the exact mechanism of action of the immunosuppressive and regulatory cells is not yet fully understood. This review article reviews the immune responses involved in BC as well as the role of regulatory and inhibitory cells in the pathogenesis of the disease. Finally, therapeutic approaches based on inhibition of immunosuppressive responses derived from regulatory cells are discussed.


Subject(s)
Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Breast Neoplasms/therapy , Dendritic Cells/immunology , Female , Humans , Lymphocytes/immunology , Mesenchymal Stem Cells/immunology , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , Tumor-Associated Macrophages/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...