Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 171(1-4): 429-39, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20052612

ABSTRACT

With the aim of understanding the seasonal distribution of deposition fluxes of nitrogen (N) and sulfur (S) in South China, a main acid deposition region in China, precipitation samples were collected and analyzed from Guangzhou area, between March 2005 and February 2006. The estimated wet deposition of N (including ammonium nitrogen (NH(4)-N) and nitrate nitrogen (NO(3)-N)) and S (sulfate sulfur (SO(4)-S)) during the monitoring period were 40.47 kg N ha(-1) and 65.29 kg S ha(-1), respectively. The average deposition of NH(4)-N was ∼1.5 times of the NO(3)-N deposition, suggesting that the reduced and oxidized N depositions were comparable in the study area. The S and N depositions in the rainy season were greater than those in the dry season, showing great seasonal variation, which was consistent with both the distribution of precipitation and the period of fertilizer application for agriculture. The N and S wet deposition fluxes in Guangzhou were greater than those in Beijing and Zhengzhou, located in the northern China, but comparable to the level of Chongqing, located in the southwestern China, another major acid deposition region. The atmospheric N and S depositions in these cities from north to south were affected by both intensive agricultural and industrial activities.


Subject(s)
Air Pollutants/analysis , Nitrogen/analysis , Rain/chemistry , Sulfur/analysis , Animals , China , Environmental Monitoring , Hydrogen-Ion Concentration , Seasons
2.
Environ Pollut ; 157(1): 35-41, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18801606

ABSTRACT

With the aim of understanding the origin of acid rains in South China, we analyzed rainwaters collected from Guangzhou, China, between March 2005 and February 2006. The pH of rainwater collected during the monitoring period varied from 4.22 to 5.87; acid rain represented about 94% of total precipitation during this period. The rainwater was characterized by high concentrations of SO(4)(2-), NO(3)(-), Ca(2+), and NH(4)(+). SO(4)(2-) and NO(3)(-), the main precursors of acid rain, were related to the combustion of coal and fertilizer use/traffic emissions, respectively. Ca(2+) and NH(4)(+) act as neutralizers of acid, accounting for the decoupling between high SO(4)(2-) concentrations and relatively high pH in the Guangzhou precipitation. The acid rain in Guangzhou is most pronounced during spring and summer. A comparison with acid precipitation in other Chinese cities reveals a decreasing neutralization capacity from north to south, probably related to the role and origin of alkaline bases in precipitation.


Subject(s)
Acid Rain/analysis , Environmental Pollution , Seasons , Chemical Precipitation , China , Cities , Environmental Monitoring/methods , Fertilizers , Humans , Hydrogen-Ion Concentration , Nitrates , Particulate Matter , Power Plants , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL
...